Preface |
|
v | |
Introduction |
|
xiii | |
|
|
xiv | |
1 Capillarity: Deformable Interfaces 1 |
|
|
|
1 | (14) |
|
|
2 | (1) |
|
1.1.2 Mechanical Definition: Surface Energy and Capillary Force |
|
|
3 | (5) |
|
1.1.3 Measurements of Surface (or Tensions Interfacial) |
|
|
8 | |
|
|
6 | (3) |
|
|
9 | (4) |
|
|
10 | (1) |
|
|
11 | (2) |
|
1.1.6 Minimal Surfaces With Zero Curvature |
|
|
13 | (2) |
|
1.2 Contact Between Three Phases: Wetting |
|
|
15 | (14) |
|
1.2.1 Two Types of Wetting: The Spreading Parameter S |
|
|
16 | (2) |
|
1.2.2 Wetting Criteria: Zisman's Rule |
|
|
18 | (3) |
|
1.2.3 Choice of Solid/Liquid Pairs |
|
|
21 | (6) |
|
|
21 | (2) |
|
|
23 | (4) |
|
1.2.4 Liquid Substrates: Neumann's Construction |
|
|
27 | (2) |
|
Appendix: Minimal Surfaces - Euler-Lagrange Equations |
|
|
29 | (1) |
|
|
30 | (3) |
2 Capillarity and Gravity |
|
33 | (36) |
|
2.1 The Capillary Length k-1 |
|
|
33 | (2) |
|
2.2 Drops and Puddles in the Partial Wetting Regime |
|
|
35 | (8) |
|
|
35 | (1) |
|
2.2.2 Droplets (R « k-1) |
|
|
36 | (1) |
|
2.2.3 Heavy Drops (R » k-1) |
|
|
36 | (2) |
|
2.2.4 Experimental Techniques for Characterizing Drops |
|
|
38 | (5) |
|
|
43 | (6) |
|
2.3.1 Characteristic Size |
|
|
43 | (2) |
|
2.3.2 Shape of a Meniscus Facing a Vertical Plate |
|
|
45 | (2) |
|
2.3.3 Meniscus on a Vertical Fiber |
|
|
47 | (2) |
|
2.4 Capillary Rise in Tubes: Jurin's Law |
|
|
49 | (5) |
|
2.4.1 Historical Background |
|
|
49 | (2) |
|
2.4.2 The Law of Capillary Rise |
|
|
51 | (1) |
|
2.4.3 Pressure Argument for the Capillary Rise |
|
|
52 | (2) |
|
|
54 | (2) |
|
2.5.1 The Spreading Parameter |
|
|
54 | (2) |
|
2.5.2 The Shape of Floating Lenses (S less than 0) 54 |
|
|
|
2.6 Supplement on Techniques for Measuring Surface Tensions |
|
|
56 | (11) |
|
|
57 | (4) |
|
2.6.1.1 The Pendant Drop Method |
|
|
57 | (3) |
|
|
60 | (1) |
|
2.6.2 Pressure Measurements |
|
|
61 | (1) |
|
|
62 | (1) |
|
2.6.4 Soft Solid Interfaces |
|
|
63 | (4) |
|
|
67 | (2) |
3 Hysteresis and Elasticity of Triple Lines |
|
69 | (18) |
|
3.1 Description of Phenomena |
|
|
69 | (3) |
|
3.1.1 Advancing and Receding Angle |
|
|
69 | (2) |
|
3.1.2 Pinning of the Triple Line |
|
|
71 | (1) |
|
3.2 Elasticity of the Triple Line |
|
|
72 | (4) |
|
3.2.1 The Myth of the Line Tension |
|
|
72 | (1) |
|
3.2.2 The Fringe Elasticity of the Line of Contact |
|
|
73 | (3) |
|
3.3 Hysteresis Due to Strong, Sparse Defects |
|
|
76 | (2) |
|
3.4 Surfaces With Dense Defects |
|
|
78 | (2) |
|
3.4.1 A Realistic Example |
|
|
78 | (1) |
|
3.4.2 Small, Uncorrelated Defects |
|
|
79 | (1) |
|
3.5 Two Cases Consistent With the Elasticity of Vibrating Strings |
|
|
80 | (4) |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (1) |
|
3.6 The Role of Thermal Fluctuations |
|
|
84 | (1) |
|
|
84 | (3) |
4 Wetting and Long-Range Forces |
|
87 | (20) |
|
4.1 Energy and Properties of Film |
|
|
87 | (7) |
|
4.1.1 Transition From Macroscopic to Microscopic |
|
|
87 | (1) |
|
4.1.2 Thickness Change and Disjoining Pressure |
|
|
88 | (2) |
|
4.1.3 Overall Stress in a Film |
|
|
90 | (1) |
|
4.1.4 Three Types of Wetting |
|
|
91 | (3) |
|
4.1.4.1 Stability Condition |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
4.2 The Nature of Long-Range Forces |
|
|
94 | (5) |
|
4.2.1 van der Waals Forces |
|
|
94 | (2) |
|
4.2.2 Case of Temperature-Dependent van der Waals Forces |
|
|
96 | (1) |
|
4.2.3 Van der Waals Interactions in Layered Solids: Surface Treatments |
|
|
97 | (1) |
|
4.2.4 Other Long-Range Forces |
|
|
98 | (1) |
|
4.3 Some Manifestations of Long-Range Forces |
|
|
99 | (4) |
|
4.3.1 Films on Slightly Rough Substrates: The Healing Length |
|
|
99 | (2) |
|
4.3.2 Fine Structure of the Triple Line |
|
|
101 | (2) |
|
|
103 | (1) |
|
|
104 | (3) |
5 Hydrodynamics of Interfaces |
|
107 | (32) |
|
5.1 Mechanics of Films: The Lubrication Approximation |
|
|
107 | (32) |
|
5.2 Dynamics of Thin Films |
|
|
111 | (11) |
|
5.2.1 Thinning of a Vertical Film |
|
|
111 | (1) |
|
5.2.2 Levelling of a Horizontal Film |
|
|
112 | (3) |
|
5.2.3 Rayleigh-Taylor Instability |
|
|
115 | (3) |
|
|
118 | (4) |
|
|
122 | (7) |
|
5.3.1 The Landau-Levich-Derjaguin Model (and Variant Thereof) |
|
|
122 | (4) |
|
|
126 | (1) |
|
|
127 | (2) |
|
5.4 Dynamics of Impregnation |
|
|
129 | (4) |
|
5.4.1 Description of the Phenomenon |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (2) |
|
|
133 | (3) |
|
5.5.1 Deep Water Condition |
|
|
133 | (1) |
|
5.5.2 Dispersion Relation in the Inertial Regime |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (3) |
6 Dynamics of the Triple Line |
|
139 | (14) |
|
|
139 | (2) |
|
6.2 Relation Between Force and Velocity |
|
|
141 | (5) |
|
6.2.1 Mechanical Model (Viscous Dissipation) |
|
|
142 | (2) |
|
|
144 | (2) |
|
6.3 Oscillations Modes of a Triple Line |
|
|
146 | (2) |
|
6.4 Dynamics of Total Wetting |
|
|
148 | (2) |
|
|
150 | (3) |
7 Dewetting |
|
153 | (38) |
|
7.1 Critical Thickness for Dewetting |
|
|
155 | (5) |
|
7.1.1 Film on a Solid Substrate |
|
|
155 | (3) |
|
7.1.2 Film on a Liquid Substrate |
|
|
158 | (1) |
|
7.1.3 Sandwiched Liquid Films |
|
|
159 | (1) |
|
|
160 | (14) |
|
7.2.1 Ideal Solid Substrates |
|
|
161 | (5) |
|
7.2.2 Imperfect Solid Substrates |
|
|
166 | (3) |
|
7.2.2.1 Surfaces With Hysteresis |
|
|
166 | (2) |
|
7.2.2.2 "Slippery" Substrates |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (4) |
|
|
174 | (7) |
|
7.3.1 The Reynolds Number |
|
|
175 | (2) |
|
7.3.2 The Froude Number (Condition for Shock Waves) |
|
|
177 | (3) |
|
7.3.3 Liquid/Liquid Inertial Dewetting |
|
|
180 | (1) |
|
7.4 Visco-Elastic Dewetting |
|
|
181 | (6) |
|
7.4.1 Rupture of Ultra-Viscous Films |
|
|
182 | (3) |
|
7.4.2 Life and Death of Viscous Bubbles |
|
|
185 | (2) |
|
|
187 | (4) |
8 Surfactants |
|
191 | (24) |
|
|
191 | (3) |
|
|
191 | (1) |
|
8.1.2 The Notion of Hydrophilic/Lipophilic Balance (HLB) |
|
|
192 | (2) |
|
8.2 Aggregation of Surfactants |
|
|
194 | (6) |
|
8.2.1 Aggregation in Volume: Micelles |
|
|
194 | (2) |
|
8.2.2 Water/Air Interfaces |
|
|
196 | (4) |
|
8.2.2.1 Insoluble Monolayers |
|
|
197 | (1) |
|
8.2.2.2 Soluble Monolayers |
|
|
197 | (3) |
|
8.2.2.3 Dynamical Surface Tensions 199 |
|
|
|
8.3 Some Applications of Surfactants |
|
|
200 | (6) |
|
|
200 | (2) |
|
|
202 | (1) |
|
|
203 | (1) |
|
8.3.4 Surfactants as Wetting and Dewetting Agents |
|
|
204 | (2) |
|
8.4 Soap Films and Bubbles |
|
|
206 | (6) |
|
8.4.l Fabrication of Films |
|
|
206 | (1) |
|
8.4.2 The Role of Surfactants |
|
|
207 | (1) |
|
8.4.3 Draining Mechanisms |
|
|
208 | (1) |
|
8.4.4 Aging and Death of Films |
|
|
209 | (2) |
|
8.4.5 The Case of Bubbles |
|
|
211 | (1) |
|
|
212 | (3) |
9 Special Interfaces |
|
215 | (30) |
|
|
215 | (1) |
|
9.2 Wetting of Textured Surfaces |
|
|
216 | (19) |
|
|
216 | (3) |
|
9.2.1.1 Experiment of Johnson and Dettre |
|
|
216 | (1) |
|
|
217 | |
|
9.2.1.3 The Cassie-Baxter Model |
|
|
210 | (9) |
|
9.2.2 Composite Rough Surfaces |
|
|
219 | (7) |
|
9.2.2.1 Hydrophilic Surfaces |
|
|
219 | (2) |
|
9.2.2.2 Hydrophobic Surfaces |
|
|
221 | (4) |
|
|
225 | (1) |
|
9.2.3 Liquid Pearls and Marbles |
|
|
226 | (9) |
|
|
226 | (3) |
|
|
229 | (1) |
|
|
230 | (5) |
|
9.3 Wetting and Porous Media |
|
|
235 | (5) |
|
9.3.1 Capillary Rise in a Porous Medium |
|
|
235 | (2) |
|
9.3.2 Equilibrium Angle at the Surface of a Porous Medium |
|
|
237 | (1) |
|
9.3.3 Suction Experiments on Drops |
|
|
238 | (1) |
|
9.3.4 Suction Experiments on Films |
|
|
239 | (1) |
|
9.4 Wetting at Soft Interfaces |
|
|
240 | (5) |
|
9.4.1 Principles of "Elastic" Wetting |
|
|
241 | (2) |
|
9.4.1.1 The Spreading Parameter S |
|
|
242 | (1) |
|
9.4.1.2 Young's Relation No Longer Holds! |
|
|
242 | (1) |
|
9.4.1.3 Penny-Shaped Trapped Drops |
|
|
242 | (1) |
|
9.4.2 Experimental Observation of Elastic Wetting |
|
|
243 | (3) |
|
9.4.2.1 The Three Partners: Soft Solid, Liquid, and Elastomer |
|
|
243 | (2) |
|
9.4.2.2 Observation of the Contact: Reflection Interference Contrast Microscopy 244 |
|
|
9.4.2.3 Drop Profile and Measurement of S |
|
245 | (16) |
|
9.4.3 "Elastic" Dewetting of Wedged-in Films |
|
|
246 | (6) |
|
|
247 | (1) |
|
9.4.3.2 Controlled Dewetting: Nucleators |
|
|
248 | (4) |
|
9.4.4 Wetting Transitions Under Shear: The Principle of Hydroplaning |
|
|
252 | (3) |
|
9.4.5 Role of Nucleators in Forced Wetting: Cerenkov Wake |
|
|
255 | (1) |
|
|
256 | (2) |
|
|
258 | (3) |
10 Transport Phenomena |
|
261 | (28) |
|
|
261 | (7) |
|
10.1.1 Experiments With Vapors |
|
|
261 | (2) |
|
10.1.2 Transport Toward Wettable Regions |
|
|
263 | (5) |
|
|
268 | (7) |
|
10.2.1 Drops Favoring the Cold |
|
|
268 | (3) |
|
|
271 | (4) |
|
|
275 | (6) |
|
|
275 | (1) |
|
10.3.2 Liquid Column in a Capillary |
|
|
276 | (2) |
|
|
278 | (2) |
|
10.3.4 "Running Drops" on a Solid Planar Surface |
|
|
280 | (1) |
|
10.4 Transport by Electric Field |
|
|
281 | (5) |
|
10.4.1 Relevance of Microsystems |
|
|
281 | (1) |
|
10.4.2 Electrocapillarity |
|
|
282 | (1) |
|
10.4.3 Principle of Electro-Osmosis |
|
|
283 | (1) |
|
|
283 | (3) |
|
10.4.4.1 Electrostatic Lenses |
|
|
283 | (2) |
|
10.4.4.2 Transfer of Bubbles |
|
|
285 | (1) |
|
|
285 | (1) |
|
10.4.4.4 Comparison with Capacitive Effects |
|
|
286 | (1) |
|
|
286 | (3) |
Index |
|
289 | |