Mitigating Bias in Machine Learning

by ;
Edition: 1st
Format: Paperback
Pub. Date: 2024-10-04
Publisher(s): McGraw Hill
  • Free Shipping Icon

    This Item Qualifies for Free Shipping!*

    *Excludes marketplace orders.

List Price: $52.50

Buy New

Arriving Soon. Will ship when available.
$50.00

Rent Book

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:1825 Days access
Downloadable:Lifetime Access
$62.50
$62.50

Used Book

We're Sorry
Sold Out

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Table of Contents

1 Beyond Algorithmic Bias
1.1 Introduction
1.2 Beyond Ethics in AI
1.3 What Is Algorithmic Justice?
1.4 Definitions of Algorithmic Fairness
1.5 Fairness Metrics
1.6 Methods for Fair Machine Learning
1.7 Tools to Help Detect and Mitigate Bias in Machine Learning Models
1.8 Best Practices to Build a Fairer Application
1.9 Chapter Summary

2 Going Beyond the Technical: Exploring Ethical and Societal Implications of Machine Learning
2.1 Introduction
2.2 Programming Approaches
2.3 Societal and Cultural Implications of Algorithms
2.4 Ethical Implications of Algorithms
2.5 Approaches to Mitigate Algorithmic Bias
2.6 Speak Up: Communicating Ideas with Digital Storytelling
2.7 Chapter Summary

3 Social Media and Health Information Dissemination
3.1 Introduction
3.2 MyHealthImpactNetwork: For Students by Students
3.3 Results of Data Inferential Analysis
3.4 Chapter Summary

4 Comparative Case Study of Fairness Toolkits
4.1 Introduction
4.2 Bias
4.3 Fairness
4.4 Applying Responsible AI
4.5 Results
4.6 What Are the Limitations of These Toolkits?
4.7 Chapter Summary

5 Bias Mitigation in Hate Speech Detection
5.1 Introduction
5.2 Background
5.3 Bias in Hate Speech Detection Systems
5.4 Bias Mitigation in Hate Speech Detection Using Transfer Learning
5.5 Bias Mitigation in Hate Speech Detection Using Transfer Learning
5.6 Adversarial Methods for Bias Reduction in Hate Speech Detection
5.7 Benefits and Pitfalls
5.8 Other Methods
5.9 Hands-on Exercise
5.10 Chapter Summary

6 Unveiling Unintended Systematic Biases in Natural Language Processing
6.1 Introduction
6.2 Unfairness and Bias in NLP Applications
6.3 Bias Taxonomy
6.4 Mitigating NLP Bias and Unfairness
6.5 Chapter Summary

7 Combating Bias in Large Language Models
7.1 Introduction
7.2 Vectorization of Stochastic Parrots
7.3 Natural Language Processing: Linear Decision Making for Nonlinear Language
7.4 Stage One: Data Collection
7.5 Stage Two: Fight Bad Math with Better Math
7.6 Stage Three: Model Constraints/Operations
7.7 Chapter Summary

8 Recognizing Bias in Medical Machine Learning and AI Models
8.1 Introduction
8.2 Defining Machine Learning
8.3 Building a Simple Machine Learning Model: Use Case
8.4 Health Care Bias and Inequities: Use Case
8.5 Chapter Summary

9 Toward Rectification of Machine Learning Bias in Health Care
9.1 Introduction
9.2 Case Study: Mitigating Bias in ML for Melanoma
9.3 Defining Types of Biases and Mitigation Techniques in ML Life Cycles
9.4 Machine Learning Fairness
9.5 Chapter Summary

10 Applying the Wells-DuBois Protocol for Achieving Systemic Equity in Socioecological Systems
10.1 Introduction
10.2 Equity Framework and Tool Application
10.3 Clustering Overview and Application
10.4 Applying the Wells-DuBois Protocol
10.5 Discussion and Future Directions
10.6 Chapter Summary

11 Community Engagement for Machine Learning
11.1 Introduction: Principles and Components of Community Engagement
11.2 Project Initiation: Steps of Conducting Community-Driven Environmental Data Science
11.3 How to Engage Communities in the Process: Case Study of the Mobile Lead Testing Unit Project in Newark, New Jersey
11.4 Chapter Summary

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.