Silicon Micromachining

by
Format: Paperback
Pub. Date: 2004-08-19
Publisher(s): Cambridge University Press
  • Free Shipping Icon

    This Item Qualifies for Free Shipping!*

    *Excludes marketplace orders.

List Price: $88.19

Buy New

Arriving Soon. Will ship when available.
$83.99

Rent Textbook

Select for Price
There was a problem. Please try again later.

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

This comprehensive book provides an overview of the key techniques used in the fabrication of micron-scale structures in silicon. Recent advances in these techniques have made it possible to create a new generation of microsystem devices, such as microsensors, accelerometers, micropumps, and miniature robots. The authors underpin the discussion of each technique with a brief review of the fundamental physical and chemical principles involved. They pay particular attention to methods such as isotropic and anisotropic wet chemical etching, wafer bonding, reactive ion etching, and surface micromachining. There is a special section on bulk micromachining, and the authors also discuss release mechanisms for movable microstructures. The book is a blend of detailed experimental and theoretical material, and will be of great interest to graduate students and researchers in electrical engineering and materials science whose work involves the study of micro-electromechanical systems (MEMS).

Table of Contents

Preface xiii
1. Introduction
1(4)
References
4(1)
2. Anisotropic wet chemical etching
5(64)
2.1 Introduction
5(2)
2.2 Mechanical properties of single crystalline silicon
7(2)
2.3 Crystallographic properties of silicon
9(2)
2.4 Process of etching
11(5)
2.5 Experimental methods
16(7)
2.5.1 Wagon wheel method
16(2)
2.5.2 Etching of spheres
18(5)
2.6 Phenomenological properties of anisotropic etching solutions
23(9)
2.6.1 Introduction
23(1)
2.6.2 KOH solutions
24(3)
2.6.3 EDP solutions
27(1)
2.6.4 TMAH solutions
28(4)
2.7 Micromachining of (100)-and (110)-oriented silicon wafers
32(4)
2.7.1 Micromachining (001)-oriented wafers
32(3)
2.7.2 Micromachining (110)-oriented wafers
35(1)
2.8 Etch stop mechanisms
36(15)
2.8.1 Introduction
36(2)
2.8.2 Time etch stop
38(5)
2.8.3 B+ etch stop
43(4)
2.8.4 Thin films
47(2)
2.8.5 Electrochemical etch stop
49(2)
2.9 Mask materials
51(228)
2.9.1 Introduction
51(1)
2.9.2 Silicon dioxide
52(1)
2.9.3 Silicon nitride
52(2)
2.10 Corner compensation
54(9)
2.10.1 Introduction
54(1)
2.10.2 Fast-etching planes
55(2)
2.10.3 Mask designs for corner compensation
57(4)
2.10.4 Results
61(2)
2.11 Miscellaneous
63(3)
2.11.1 Laser assisted etching
63(1)
2.11.2 Backside protection
64(2)
References
66(3)
3. Chemical physics of wet chemical etching
69(33)
3.1 Introduction
69(2)
3.2 Crystallography revisited: Atomic structure of surfaces
71(5)
3.3 Surface free energy and step free energy
76(1)
3.4 Thermodynamics
77(6)
3.4.1 Chemical reaction
77(4)
3.4.2 Chemical potential difference
81(1)
3.4.3 The roughening transition
81(2)
3.5 Kinetics
83(6)
3.5.1 Nucleation of etch pits
83(3)
3.5.2 Etch pits formed by screw dislocations
86(2)
3.5.3 Kinetic roughening
88(1)
3.6 Etch rate diagrams
89(6)
3.6.1 Close to the etch rate minimum
89(1)
3.6.2 Form of the minimum
90(5)
3.7 Direct evidence for steps
95(3)
3.8 Summary
98(1)
References
99(3)
4. Wafer bonding
102(21)
4.1 Introduction
102(1)
4.2 Silicon fusion bonding
102(9)
4.2.1 Description of the process
103(2)
4.2.2 Mechanism of fusion bonding
105(3)
4.2.3 Effect of wafer surface imperfections
108(2)
4.2.4 Bonding of hydrophobic wafers
110(1)
4.2.5 Silicon fusion bonding after chemical mechanical polishing
111(1)
4.3 Anodic bonding
111(6)
4.3.1 Anodic bonding of a silicon wafer to a Pyrex wafer
112(3)
4.3.2 Anodic bonding using a sputtered thin film of Pyrex
115(2)
4.4 Low-temperature bonding
117(4)
References
121(2)
5. Examples and applications
123(28)
5.1 Introduction
123(1)
5.2 Membranes
123(14)
5.2.1 Pressure sensors
123(9)
5.2.2 Miniature microphones
132(2)
5.2.3 Application of membranes in micro liquid handling devices
134(3)
5.3 Beams
137(11)
References
148(3)
6. Surface micromachining
151(30)
6.1 Introduction
151(1)
6.2 Basic fabrication issues for surface micromachining
151(9)
6.2.1 The basic idea
152(1)
6.2.2 Properties of thin film materials
153(4)
6.2.3 Sacrificial layer etching in HF solutions
157(1)
6.2.4 Stiction
158(2)
6.3 Applications
160(17)
6.3.1 Combdrives
160(2)
6.3.2 Manipulators and x-y stages
162(2)
6.3.3 Microgrippers
164(3)
6.3.4 Rotating micromotors
167(6)
6.3.5 Resonators and sensors
173(4)
References
177(4)
7. Isotropic wet chemical etching of silicon
181(12)
7.1 Etchants and etching diagrams
181(2)
7.2 Diffusion and stirring
183(1)
7.3 Mask materials
183(1)
7.4 Anodic HF etching
183(8)
7.4.1 Introduction
183(1)
7.4.2 Electrochemical etching mechanism
183(2)
7.4.3 Geometry control of etched structures
185(2)
7.4.4 Low-doped selective anodic HF etching
187(4)
References
191(2)
8. Introduction into dry plasma etching in microtechnology
193(7)
8.1 Microtechnology
193(1)
8.2 Plasmas
194(3)
8.3 Etching
197(1)
8.4 Outline
198(1)
References
199(1)
9. Why plasmas?
200(6)
9.1 Vapor etching
201(1)
9.2 Wet etching
201(1)
9.2.1 Freeze drying
201(1)
9.2.2 Photoresist-assisted releasing
202(1)
9.2.3 Surface modification
202(1)
9.3 Dry etching
202(3)
9.3.1 Photon beam etching
202(1)
9.3.2 Neutral (beam) etching
203(1)
9.3.3 Plasma etching
204(1)
References
205(1)
10. What is plasma etching? 206(62)
10.1 Principle of plasma etching
209(3)
10.2 Physical model
212(1)
10.2.1 Particle velocity, mean kinetic energy, and temperature
213(3)
10.2.2 Pressure, flux, and rate of effusion
216(1)
10.2.3 Entropy
217(1)
10.2.4 Probability of collision and mean free path
218(2)
10.2.5 Elastic collisions
220(1)
10.2.6 Inelastic collisions
220(4)
10.2.7 Plasma density
224(1)
10.2.8 Debye length
224(2)
10.2.9 Plasma parameter
226(1)
10.2.10 Plasma oscillations
226(1)
10.2.11 Plasma-to-floating potential
226(2)
10.2.12 Examples
228(4)
10.3 Chemical model
232(32)
10.3.1 Thermodynamic language
233(3)
10.3.2 Reversible thermodynamics
236(22)
10.3.3 Steady state thermodynamics
258(6)
10.4 Electrical equivalent circuit
264(3)
10.4.1 Discharge unit
265(1)
10.4.2 Rf power supply and matching unit
265(1)
10.4.3 VSWR measuring unit
265(1)
10.4.4 Self-bias potential
266(1)
References
267(1)
11. Plasma system configurations 268(12)
11.1 Chemistry
269(1)
11.2 Frequency
269(1)
11.3 Electrode arrangement
270(1)
11.4 Load capacity and technique
271(1)
11.5 Plasma-sample distance
271(5)
11.5.1 Contact plasma etching
272(2)
11.5.2 Remote plasma etching
274(2)
11.6 Operating pressure
276(1)
11.7 Type of etching species
276(3)
11.7.1 Radical etching (RE) or plasma etching (PE)
277(1)
11.7.2 Ion beam assisted radical etching (IBARE) or reactive ion etching (RIE)
277(2)
11.7.3 Ion beam etching
279(1)
References
279(1)
12. Contact plasma etching 280(34)
12.1 Etch directionality in IBARE
280(2)
12.1.1 Ion-induced IBARE
280(1)
12.1.2 Ion-inhibitor IBARE
281(1)
12.2 Pure plasma chemistries
282(2)
12.2.1 Hydrogen based
282(1)
12.2.2 Fluorine based
282(1)
12.2.3 Chlorine based
283(1)
12.2.4 Bromine based
283(1)
12.2.5 Oxygen based
284(1)
12.3 Mixed plasma chemistries
284(4)
12.3.1 Mixed molecules
284(1)
12.3.2 Mixed gases
284(4)
12.4 Multistep plasma chemistries
288(1)
12.5 Plasma parameters/influences
288(4)
12.5.1 Doping
288(2)
12.5.2 Temperature
290(1)
12.5.3 Reactor materials
290(1)
12.5.4 Reactor cleanliness
291(1)
12.5.5 Loading
291(1)
12.6 Mask materials/influences
292(4)
12.6.1 Etchability
292(1)
12.6.2 Film formation
293(1)
12.6.3 Catalytic reactions
293(1)
12.6.4 Selectivity
293(1)
12.6.5 Materials
294(1)
12.6.6 Conductivity
295(1)
12.6.7 Temperature
295(1)
12.7 Problems and solutions
296(3)
12.7.1 Uniformity
296(1)
12.7.2 Roughness
296(1)
12.7.3 ARDE
297(2)
12.7.4 RIE damage
299(1)
12.8 Data acquisition
299(9)
12.8.1 Fundamental models
300(1)
12.8.2 Design-of-experiment models
300(3)
12.8.3 Black surface methodology
303(5)
12.9 End point detection and plasma diagnostics
308(1)
12.9.1 Laser interferometry/reflectance and ellipsometry
308(1)
12.9.2 Spectroscopy
308(1)
12.9.3 Probes
309(1)
12.10 Current trends
309(3)
12.10.1 Magnetron ion etching (MIE)
309(1)
12.10.2 Electron cyclotron resonance (ECR)
310(1)
12.10.3 Inductively coupled plasma (ICP)
310(1)
12.10.4 Pulsed plasma
310(1)
12.10.5 Cryogenic cooling
311(1)
12.10.6 Clustering
311(1)
12.10.7 Others
312(1)
References
312(2)
13. Remote plasma etching 314(17)
13.1 Review of vacuum etching
314(2)
13.2 Etch apparatus
316(1)
13.2.1 The vacuum system
316(1)
13.2.2 The ion source
316(1)
13.2.3 The substrate holder
317(1)
13.2.4 The heater
317(1)
13.3 Review of thermally assisted ion beam etching
317(1)
13.4 Etch mechanism
317(5)
13.4.1 Photon source
318(1)
13.4.2 Conduction
319(1)
13.4.3 Radiation
320(1)
13.4.4 Sublimation
320(2)
13.5 Grass
322(2)
13.6 Experimental
324(1)
13.7 Results and applications
325(4)
References
329(2)
14. High aspect ratio trench etching 331(51)
14.1 Qualitative analysis
332(6)
14.1.1 IBARE setting
333(1)
14.1.2 Equipment parameters
333(1)
14.1.3 Plasma characteristics
333(3)
14.1.4 Trench-forming mechanisms
336(2)
14.1.5 HART effects
338(1)
14.2 Equipment and experimental
338(1)
14.2.1 Plasmafab 310/340
338(1)
14.2.2 Plasmalab 100
338(1)
14.2.3 Experimental
339(1)
14.3 HARTs
339(6)
14.3.1 Tilting
339(1)
14.3.2 Bowing
340(1)
14.3.3 TADTOP
341(1)
14.3.4 RIE lag due to ions
341(1)
14.3.5 RIE lag due to radical depletion or reflection
342(1)
14.3.6 Micrograss
343(2)
14.3.7 Bottling
345(1)
14.4 Quantitative analysis of RIE lag
345(32)
14.4.1 Problem description
347(1)
14.4.2 Ion beam assisted radical etching
347(3)
14.4.3 Literature
350(1)
14.4.4 Inhibitor depletion in a trench
351(1)
14.4.5 Radical depletion in a trench
352(4)
14.4.6 Ion depletion in a trench
356(13)
14.4.7 Ion/solid interactions
369(1)
14.4.8 Experimental
370(7)
14.5 Conclusions
377(3)
References
380(2)
15. Moulding of microstructures 382(6)
15.1 Dry etching
383(1)
15.2 Electroplating
383(1)
15.3 Embossing
384(1)
15.4 Dry etching with photoresist as a mask
385(2)
References
387(1)
16. Fabrication of movable microstructures 388(11)
16.1 SCREAM
388(1)
16.2 SIMPLE
389(1)
16.3 BSM-ORMS
390(6)
16.3.1 BSM-SCS
391(1)
16.3.2 BSM-SOI
392(2)
16.3.3 BSM-SISI
394(1)
16.3.4 Conclusion
395(1)
References
396(3)
Index 399

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.