
Algorithms for Decision Making
by Kochenderfer, Mykel J.; Wheeler, Tim A.; Wray, Kyle H.-
This Item Qualifies for Free Shipping!*
*Excludes marketplace orders.
Buy New
Rent Textbook
Used Textbook
We're Sorry
Sold Out
eTextbook
We're Sorry
Not Available
How Marketplace Works:
- This item is offered by an independent seller and not shipped from our warehouse
- Item details like edition and cover design may differ from our description; see seller's comments before ordering.
- Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
- Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
- Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.
Summary
Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them.
The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Author Biography
Table of Contents
Acknowledgments xxi
1 Introduction 1
Part I Probabilistic Reasoning
2 Representation 19
3 Inference 43
4 Parameter Learning 71
5 Structure Learning 97
6 Simple Decisions 111
Part II Sequential Problems
7 Exact Solution Methods 133
8 Approximate Value Functions 161
9 Online Planning 181
10 Policy Search 213
11 Policy Gradient Estimation 231
12 Policy Gradient Optimization 249
13 Actor-Critic Methods 267
14 Policy Validation 281
Part III Model Uncertainty
15 Exploration and Exploitation 299
16 Model-Based Methods 317
17 Model-Free Methods 335
18 Imitation Learning 335
Part IV State Uncertainty
19 Beliefs 379
20 Exact Belief State Planning 407
21 Offline Belief State Planning 427
22 Online Belief State Planning 453
23 Controller Abstractions 471
Part V Multiagent Systems
24 Multiagent Reasoning 493
25 Sequential Problems 517
26 State Uncertainty 533
27 Collaborative Agents 545
Appendices
A Mathematical Concepts 561
B Probability Distributions 573
C Computational Complexity 575
D Neural Representations 581
E Search Algorithms 599
F Problems 609
G Julia 627
References 651
Index 671
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.