Building Physics: Heat, Air and Moisture, includes eBook Fundamentals and Engineering Methods with Examples and Exercises
by Hens, Hugo S. L.-
This Item Qualifies for Free Shipping!*
*Excludes marketplace orders.
Buy New
Rent Book
Used Book
We're Sorry
Sold Out
eBook
We're Sorry
Not Available
Summary
The book deals with the description, analysis and modeling of heat, air and moisture transport in building assemblies and whole buildings with main emphasis on the building engineering applications, including examples. The physical transport processes determine the performance of the building envelope and may influence the serviceability of the structure and the whole building.
Compared to the second edition, in this third edition the text has partially been revised and extended.
Author Biography
Table of Contents
0.1 Subject of the book
0.2 Building physics
0.3 Importance of building physics
0.4 History of Building Physics
0.5 Units and symbols
1 Heat transfer
1.1 Overview
1.2 Conduction
1.2.1 Conservation of energy
1.2.2 Fourier laws
1.2.3 Steady state
1.2.4 Transient regime
1.3 Convection
1.3.1 Heat exchange at a surface
1.3.2 Convective heat transfer
1.3.3 Convection typology
1.3.4 Calculating the convective surface film coefficient
1.3.5 Values for the convective surface film coefficient
1.4 Radiation
1.4.2 Quantities
1.4.3 Reflection, absorption and transmission
1.4.4 Radiant surfaces
1.4.6 Grey bodies
1.4.7 Coloured bodies
1.4.8 Practical formulas
1.5 Applications
1.5.1 Surface film coefficients and reference temperatures
1.5.2 Steady state, one dimension: flat assemblies
1.5.3 Steady state, cylindrical coordinates: pipes
1.5.4 Steady state, two and three dimensions: thermal bridges
1.5.5 Steady state: windows
1.5.7 Transient, periodic: flat assemblies
1.5.8 Heat balances
1.5.8 Transient, periodic: spaces
1.6 Problems
2 Mass transfer
2.1 Generalities
2.1.1 Quantities and definitions
2.1.2 Saturation degrees
2.1.3 Air and moisture transport
2.1.4 Moisture sources
2.1.5 Air, moisture and durability
2.1.6 Link between mass and energy transfer
2.1.7 Conservation of mass
2.2 Air Transfer
2.2.1 Overview
2.2.2 Air pressure differences
2.2.3 Air permeances
2.2.4 Air transfer in open-porous materials
2.2.5 Air flow across permeable layers, apertures, joints, leaks and cavities
2.2.6 Air transfer at building level
2.2.7 Combined heat and air transfer
2.3 Vapour Transfer
2.3.1 Water vapour in the air
2.3.2 Water vapour in open-porous materials
2.3.3 Vapour transfer in the air
2.3.4 Vapour transfer in materials and assemblies
2.3.5 Surface film coefficients for diffusion
2.3.6 Applications
2.4 Moisture Transfer
2.4.1 Overview
2.4.2 Moisture transfer in a pore
2.4.3 Moisture transfer in materials and assemblies
2.4.4 Simplified moisture transfer
2.5 Problems
3 Combined heat, air, moisture transfer
3.1 Overview
3.2 Material and assembly level
3.3 Building Level
3.4 Problems
References
Annex, Problems, Solutions
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.