Preface |
|
xiii | |
|
|
1 | (42) |
|
History of Neural Networks |
|
|
4 | (3) |
|
Structure and Function of a Single Neuron |
|
|
7 | (9) |
|
|
7 | (2) |
|
|
9 | (7) |
|
|
16 | (6) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
22 | (1) |
|
|
22 | (1) |
|
Feedback-based weight adaptation |
|
|
23 | (1) |
|
What Can Neural Networks Be Used for? |
|
|
24 | (11) |
|
|
25 | (1) |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
27 | (2) |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (3) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (2) |
|
|
41 | (2) |
|
Supervised Learning: Single-Layer Networks |
|
|
43 | (22) |
|
|
43 | (2) |
|
|
45 | (1) |
|
Perceptron Training Algorithm |
|
|
46 | (6) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (2) |
|
|
54 | (7) |
|
|
55 | (2) |
|
|
57 | (3) |
|
Multiclass discrimination |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (3) |
|
Supervised Learning: Multilayer Networks I |
|
|
65 | (46) |
|
Multilevel Discrimination |
|
|
66 | (1) |
|
|
67 | (3) |
|
|
67 | (1) |
|
|
68 | (2) |
|
Backpropagation Algorithm |
|
|
70 | (9) |
|
Setting the Parameter Values |
|
|
79 | (9) |
|
Initialization of weights |
|
|
79 | (1) |
|
Frequency of weight updates |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (1) |
|
|
84 | (1) |
|
Number of hidden layers and nodes |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (5) |
|
|
88 | (2) |
|
Representations of functions |
|
|
90 | (1) |
|
Approximations of functions |
|
|
91 | (2) |
|
Accelerating the Learning Process |
|
|
93 | (5) |
|
|
93 | (1) |
|
|
94 | (4) |
|
|
98 | (7) |
|
Weaning from mechanically assisted ventilation |
|
|
98 | (2) |
|
Classification of myoelectric signals |
|
|
100 | (1) |
|
Forecasting commodity prices |
|
|
101 | (2) |
|
Controlling a gantry crane |
|
|
103 | (2) |
|
|
105 | (1) |
|
|
106 | (5) |
|
Supervised Learning: Multilayer Networks II |
|
|
111 | (46) |
|
|
111 | (5) |
|
Adaptive Multilayer Networks |
|
|
116 | (20) |
|
Network pruning algorithms |
|
|
116 | (2) |
|
|
118 | (5) |
|
|
123 | (5) |
|
|
128 | (2) |
|
|
130 | (3) |
|
|
133 | (3) |
|
|
136 | (5) |
|
|
136 | (3) |
|
Feedforward networks for forecasting |
|
|
139 | (2) |
|
|
141 | (8) |
|
|
149 | (4) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
157 | (60) |
|
|
161 | (12) |
|
|
161 | (2) |
|
|
163 | (1) |
|
Simple competitive learning |
|
|
164 | (9) |
|
Learning Vector Quantizers |
|
|
173 | (3) |
|
Counterpropagation Networks |
|
|
176 | (4) |
|
Adaptive Resonance Theory |
|
|
180 | (7) |
|
Topologically Organized Networks |
|
|
187 | (14) |
|
|
188 | (7) |
|
|
195 | (2) |
|
|
197 | (4) |
|
|
201 | (3) |
|
|
202 | (1) |
|
|
202 | (2) |
|
|
204 | (4) |
|
Principal Component Analysis Networks |
|
|
208 | (5) |
|
|
213 | (1) |
|
|
214 | (3) |
|
|
217 | (50) |
|
Non-iterative Procedures for Association |
|
|
219 | (8) |
|
|
227 | (17) |
|
Discrete Hopfield networks |
|
|
228 | (9) |
|
Storage capacity of Hopfield networks* |
|
|
237 | (4) |
|
Continuous Hopfield networks |
|
|
241 | (3) |
|
Brain-State-in-a-Box Network |
|
|
244 | (5) |
|
|
249 | (6) |
|
|
254 | (1) |
|
|
255 | (7) |
|
|
262 | (1) |
|
|
263 | (4) |
|
|
267 | (40) |
|
Optimization using Hopfield Networks |
|
|
269 | (10) |
|
Traveling salesperson problem |
|
|
270 | (5) |
|
Solving simultaneous linear equations |
|
|
275 | (1) |
|
Allocating documents to multiprocessors |
|
|
276 | (3) |
|
Iterated Gradient Descent |
|
|
279 | (1) |
|
|
280 | (5) |
|
|
285 | (2) |
|
|
287 | (13) |
|
|
288 | (2) |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
291 | (2) |
|
|
293 | (3) |
|
|
296 | (3) |
|
|
299 | (1) |
|
|
300 | (2) |
|
|
302 | (5) |
A Little Math |
|
307 | (8) |
|
|
307 | (2) |
|
|
309 | (1) |
|
|
310 | (5) |
Data |
|
315 | (16) |
|
|
315 | (1) |
|
Classification of Myoelectric Signals |
|
|
316 | (2) |
|
|
318 | (1) |
|
Clustering Animal Features |
|
|
319 | (1) |
|
3-D Corners, Grid and Approximation |
|
|
319 | (4) |
|
Eleven-City Traveling Salesperson Problem (Distances) |
|
|
323 | (1) |
|
Daily Stock Prices of Three Companies, over the Same Period |
|
|
324 | (3) |
|
|
327 | (4) |
Bibliography |
|
331 | (8) |
Index |
|
339 | |