
Engineering Design: A Project-based Introduction
by Dym, Clive L.-
This Item Qualifies for Free Shipping!*
*Excludes marketplace orders.
-
We Buy This Book Back!
Buy New
Buy Used
Rent Textbook
Rent Digital
How Marketplace Works:
- This item is offered by an independent seller and not shipped from our warehouse
- Item details like edition and cover design may differ from our description; see seller's comments before ordering.
- Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
- Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
- Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.
Summary
Author Biography
Clive Dym was a professor emeritus of Engineering Design and also Director of the Center for Design Education at Harvey Mudd College. He served as the chair of the engineering department at Harvey Mudd College from 1999 through 2002.
Table of Contents
Foreword
Preface
Acknowledgments
Part I: Introduction
Chapter 1 Engineering Design
What does it mean to “design” something? Is engineering design different from other kinds of design?
1.1 Where and when do engineers design?
1.2 A basic vocabulary for engineering design
Defining engineering design
Assumptions underlying our definition of engineering design
Measuring the success of an engineering design
Form and function
Design and systems
Communication and design
1.3 Learning and doing engineering design
Engineering design problems are challenging
Learning design by doing
1.4 Managing engineering design projects
1.5 Notes
Chapter 2 Defining a Design Process and a Case Study
How do I do engineering design? Can you show me an example?
2.1 The design process as a process of questioning
2.2 Describing and prescribing a design process
2.3 Informing a design process
Informing a design process by thinking strategically
Informing a design process with formal design methods
Acquiring design knowledge to inform a design process
Informing a design process with analysis and testing
Getting feedback to inform a design process
2.4 Case study: Design of a stabilizer for microlaryngeal surgery
2.5 Illustrative design examples
2.6 Notes
Part II: The Design Process and Design Tools
Chapter 3 Problem Definition: Detailing Customer Requirements
What does the client require of this design?
3.1Clarifying the initial problem statement
3.2 Framing customer requirements
Lists of desired attributes and of design objectives
3.3 Revised project statements: Public statements of the design project
3.4 Designing an arm support for a CP-afflicted student
3.5 Notes
Chapter 4 Problem Definition: Clarifying the Objectives
What is this design intended to achieve?
4.1 Clarifying a client’s objectives
Representing lists of objectives in objectives trees
Remarks on objectives trees
The objectives tree for the juice container design
4.2 Measurement issues in ordering and evaluating objectives
4.3 Rank ordering objectives with pairwise comparison charts
An individual’s rank orderings
Aggregating rank orderings for a group
Using pairwise comparisons properly
4.4 Developing metrics to measure the achievement of objectives
Establishing good metrics for objectives
Establishing metrics for the juice container
4.5 Objectives and metrics for the Danbury arm support
4.6 Notes
Chapter 5 Problem Definition: Identifying Constraints
What are the limits for this design problem?
5.1 Identifying and setting the client’s limits
5.2 Displaying and using constraints
5.3 Constraints for the Danbury arm support
5.4 Notes
Chapter 6 Problem Definition: Establishing Functions
How do I express a design’s functions in engineering terms?
6.1 Establishing functions
Functions: Input is transformed into output
Expressing functions
6.2 Functional analysis: Tools for establishing functions
Black boxes and glass boxes
Dissection, or reverse engineering
Enumeration
Function-means trees
Remarks on functions and objectives
6.3 Design specifications: Specifying functions, features and behavior
Attaching numbers to design specifications
Setting performance levels
Interface performance specifications
House of Quality: Accounting for the customers’ requirements
6.4 Functions for the Danbury arm support
6.5 Notes
Chapter 7 Conceptual Design: Generating Design Alternatives
How do I generate or create feasible designs?
7.1 Generating the “design space,” a space of engineering designs
Defining a design space by generating a morphological chart
Thinking metaphorically and strategically
The 6–3–5 method
The C-sketch method
The gallery method
Guiding thoughts on design generation
7.2 Navigating, expanding and contracting the design space
Navigating design spaces
Expanding a design space when it is too small
Contracting a design space when it is too large
7.3 Generating designs for the Danbury arm support
7.4 Notes
Chapter 8 Conceptual Design: Evaluating Design Alternatives and Choosing a Design
Which design should I choose? Which design is “best”?
8.1 Applying metrics to objectives: Selecting the preferred design
Numerical evaluation matrices
Priority checkmark method
Best of class chart
An important reminder about design evaluation
8.2 Evaluating designs for the Danbury arm support
8.3 Notes
Part III: Design Communication
Chapter 9 Communicating Designs Graphically
Here’s my design; can you make it?
9.1 Engineering sketches and drawings speak to many audiences
9.2 Sketching
9.3 Fabrication specifications: The several forms of engineering drawings
Design drawings
Detail drawings
Some Danbury arm support drawings
9.4 Fabrication specifications: The devil is in the details
9.5 Final notes on drawings
9.6 Notes
Chapter 10 Prototyping and Proofing the Design
Here’s my design; how well does it work?
10.1 Prototypes, models and proofs of concept
Prototypes and models are not the same thing
Testing prototypes and models, and proving concepts
When do we build a prototype?
10.2 Building models and prototypes
Who is going to make it?
Can we buy parts or components?
How, and from what, will the model/prototype be made?
How much will it cost?
10.3 Notes
Chapter 11 Communicating Designs Orally and in Writing
How do we let our client know about our solutions?
11.1 General guidelines for technical communication
11.2 Oral presentations: Telling a crowd what’s been done
Knowing the audience: Who’s listening?
The presentation outline
Presentations are visual events
Practice makes perfect, maybe . . .
Design reviews
11.3 The project report: Writing for the client, not for history
The purpose of and the audience for the final report
The rough outline: Structuring the final report
The topic sentence outline: Every entry represents a paragraph
The first draft: Turning several voices into one
The final, final report: Ready for prime time
11.4 Final report elements for the Danbury arm support
Rough outlines of two project reports
One TSO for the Danbury arm support
The final outcome: The Danbury arm support
11.5 Notes
Part IV: Design Modeling, Engineering Economics and Design Use
Chapter 12 Mathematical Modeling in Design
Math and physics are very much part of the design process!
12.1 Some mathematical habits of thought for design modeling
Basic principles of mathematical modeling
Abstraction, scaling and lumped elements
12.2 Some mathematical tools for design modeling
Physical dimensions in design (I): Dimensions and units
Physical dimensions in design (II): Significant figures
Physical dimensions in design (III): Dimensional analysis
Physical idealizations, mathematical approximations and linearity
Conservation and balance laws
Series and parallel connections
Mechanical-electrical analogies
12.3 Modeling a battery-powered payload cart
Modeling the mechanics of moving a payload cart up a ramp
Selecting a battery and battery operating characteristics
Selecting a motor and motor operating characteristics
12.4 Design modeling of a ladder rung
Modeling a ladder rung as an elementary beam
Design criteria
12.5 Preliminary design of a ladder rung
Preliminary design considerations for a ladder rung:
Preliminary design of a ladder rung for stiffness
Preliminary design of a ladder rung for strength
12.6 Closing remarks on mathematics, physics and design
12.7 Notes
Chapter 13 Engineering Economics in Design
How much is this going to cost?
13.1 Cost estimation: How much does this particular design cost?
Labor, materials and overhead costs
Economies of scale: Do we make it or buy it?
The cost of design and the cost of the designed device
13.2 The time value of money
13.3 Closing considerations on engineering and economics
13.4 Notes
Chapter 14 Design for Production, Use and Sustainability
What other factors influence the design process?
14.1 Design for production: Can this design be made?
Design for manufacturing (DFM)
Design for assembly (DFA)
The bill of materials and production
14.2 Design for use: How long will this design work?
Reliability
Maintainability
14.3 Designing for sustainability: What about the environment?
Environmental issues and design
Global climate change
Environmental life cycle assessments
14.4 Notes
Part V: Design Teams, Team Management and Ethics in Design
Chapter 15 Design Team Dynamics
We can do this together, as a team!
15.1 Forming design teams
Stages of group formation
Team dynamics and design process activities
15.2 Constructive conflict: Enjoying a good fight
15.3 Leading design teams
Leadership and membership in teams
Personal behavior and roles in team settings
15.4 Notes
Chapter 16 Managing a Design Project
What do you want? When do you want it? How much are we going to spend?
16.1 Getting started: Establishing the managerial needs of a project
16.2 Tools for managing a project’s scope
Team charters
Work breakdown structures
16.3 The team calendar: A tool for managing a project’s schedule
16.4 The budget: A tool for managing a project’s spending
16.5 Monitoring and controlling projects: Measuring a project’s progress
16.6 Managing the end of a project
16.7 Notes
Chapter 17 Ethics in Design
Design is not just a technical matter.
17.1 Ethics: Understanding obligations
17.2 Codes of ethics: What are our professional obligations?
17.3 Obligations may start with the client . . .
17.4 . . . but what about the public and the profession?
17.5 On engineering practice and the welfare of the public
17.6 Ethics: Always a part of engineering practice
17.7 Notes
Appendices
Appendix I: Practical Aspects of Prototyping
AI.1 Working safely in a shop
AI.2 Selecting materials
AI.3 Building techniques
AI.4 Selecting a fastener
Fastening wood
Fastening polymers
Fastening metals
What size temporary fastener should I choose?
AI.5 Notes
Appendix II: Practical Aspects of Engineering Drawing
AII.1 Dimensioning
Orthographic views
Metric vs. Inch
Line types
Orienting, spacing and placing dimensions
Types of dimensions
AII.2 Geometric tolerancing
The 14 geometric tolerances
Feature control frames
Material condition modifiers
Datums
Position tolerance
Fasteners
AII.3 How do I know my part meets the specifications in my drawing?
AII.4 Notes
Appendix III: Exercises
References and Bibliography
Index
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.