Enumerative Combinatorics

by
Edition: Reprint
Format: Hardcover
Pub. Date: 1999-01-13
Publisher(s): Cambridge University Press
  • Free Shipping Icon

    This Item Qualifies for Free Shipping!*

    *Excludes marketplace orders.

List Price: $227.85

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:180 Days access
Downloadable:180 Days
$64.32
Online:1825 Days access
Downloadable:Lifetime Access
$80.39
$64.32

New Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course on combinatorics, and includes the important Robinson-Schensted-Knuth algorithm. Also covered are connections between symmetric functions and representation theory. An appendix by Sergey Fomin covers some deeper aspects of symmetric function theory, including jeu de taquin and the Littlewood-Richardson rule. As in Volume 1, the exercises play a vital role in developing the material. There are over 250 exercises, all with solutions or references to solutions, many of which concern previously unpublished results. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.

Table of Contents

Foreword v
Preface vii
Notation xi
Trees and the Composition of Generating Functions
1(158)
The Exponential Formula
1(9)
Applications of the Exponential Formula
10(12)
Enumeration of Trees
22(14)
The Lagrange Inversion Formula
36(8)
Exponential Structures
44(10)
Oriented Trees and the Matrix-Tree Theorem
54(105)
Notes
65(4)
References
69(3)
Exercises
72(31)
Solutions to Exercises
103(56)
Algebraic, D-Finite, and Noncommutative Generating Functions
159(127)
Algebraic Generating Functions
159(9)
Examples of Algebraic Series
168(11)
Diagonals
179(8)
D-Finite Generating Functions
187(8)
Noncommutative Generating Functions
195(7)
Algebraic Formal Series
202(7)
Noncommutative Diagonals
209(77)
Notes
211(3)
References
214(3)
Exercises
217(32)
Solutions to Exercises
249(37)
Symmetric Functions
286(127)
Symmetric Functions in General
286(1)
Partitions and Their Orderings
287(2)
Monomial Symmetric Functions
289(1)
Elementary Symmetric Functions
290(4)
Complete Homogeneous Symmetric Functions
294(2)
An Involution
296(1)
Power Sum Symmetric Functions
297(4)
Specializations
301(5)
A Scalar Product
306(2)
The Combinatorial Definition of Schur Functions
308(8)
The RSK Algorithm
316(6)
Some Consequences of the RSK Algorithm
322(2)
Symmetry of the RSK Algorithm
324(7)
The Dual RSK Algorithm
331(3)
The Classical Definition of Schur Functions
334(8)
The Jacobi-Trudi Identity
342(3)
The Murnaghan-Nakayama Rule
345(4)
The Characters of the Symmetric Group
349(7)
Quasisymmetric Functions
356(9)
Plane Partitions and the RSK Algorithm
365(6)
Plane Partitions with Bounded Part Size
371(7)
Reverse Plane Partitions and the Hillman-Grassl Correspondence
378(4)
Applications to Permutation Enumeration
382(8)
Enumeration under Group Action
390(23)
Notes
396(9)
References
405(8)
A1 Knuth Equivalence, Jeu de Taquin, and the Littlewood-Richardson Rule 413(27)
A1.1 Knuth Equivalence and Greene's Theorem
413(6)
A1.2 Jeu de Taquin
419(10)
A1.3 The Littlewood-Richardson Rule
429(11)
Notes
437(1)
References
438(2)
A2 The Characters of GL(n, C) 440(121)
Exercises
450(40)
Solutions to Exercises
490(71)
Index 561(22)
Additional Errata and Addenda 583

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.