|
|
15 | (24) |
|
Why write another book about image processing? |
|
|
15 | (2) |
|
Possibilities and limitations |
|
|
17 | (2) |
|
Types of inspection tasks |
|
|
19 | (1) |
|
Structure of image processing systems |
|
|
20 | (7) |
|
|
20 | (3) |
|
Signal flow in the process environment |
|
|
23 | (3) |
|
Signal flow within an image processing system |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
29 | (7) |
|
|
30 | (3) |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (3) |
|
Overview: Image Preprocessing |
|
|
39 | (36) |
|
Gray scale transformations |
|
|
40 | (7) |
|
|
40 | (2) |
|
Linear gray level scaling |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
Local contrast enhancement |
|
|
45 | (2) |
|
|
47 | (5) |
|
Image addition and averaging |
|
|
47 | (1) |
|
|
48 | (2) |
|
Minimum and maximum of two images |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (14) |
|
Local operations and neighborhoods |
|
|
52 | (1) |
|
Principle of linear filters |
|
|
53 | (3) |
|
|
56 | (5) |
|
|
61 | (5) |
|
|
66 | (1) |
|
|
67 | (3) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (3) |
|
|
75 | (20) |
|
Position of an individual object |
|
|
75 | (6) |
|
Positioning using the entire object |
|
|
76 | (2) |
|
Positioning using an edge |
|
|
78 | (3) |
|
Orientation of an individual object |
|
|
81 | (5) |
|
Orientation computation using principal axis |
|
|
81 | (3) |
|
Distance-versus-angle signature |
|
|
84 | (2) |
|
|
86 | (6) |
|
|
86 | (1) |
|
Image processing components |
|
|
87 | (1) |
|
Position determination on one object |
|
|
88 | (1) |
|
Orientation of an object configuration |
|
|
89 | (1) |
|
Comments concerning position adjustment |
|
|
90 | (2) |
|
|
92 | (3) |
|
|
95 | (30) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (8) |
|
|
97 | (1) |
|
Threshold determination from histogram analysis |
|
|
98 | (1) |
|
|
99 | (3) |
|
Generalizations of thresholding |
|
|
102 | (2) |
|
|
104 | (4) |
|
|
104 | (2) |
|
Generating object contours |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
108 | (3) |
|
Edge probing in industrial image scenes |
|
|
108 | (1) |
|
Edge detection with subpixel accuracy |
|
|
109 | (2) |
|
|
111 | (9) |
|
|
112 | (3) |
|
Optimizing template matching |
|
|
115 | (4) |
|
Comments on template matching |
|
|
119 | (1) |
|
|
120 | (5) |
|
|
125 | (40) |
|
|
125 | (7) |
|
Principle of gray-level-based bar code identification |
|
|
126 | (1) |
|
|
127 | (2) |
|
Examples of industrial bar code identification |
|
|
129 | (3) |
|
|
132 | (1) |
|
|
132 | (17) |
|
Laser-etched characters on an IC |
|
|
132 | (1) |
|
Basic configuration of the character recognition |
|
|
133 | (3) |
|
Fundamental structure of a classifier application |
|
|
136 | (5) |
|
Position adjustment on the IC |
|
|
141 | (4) |
|
Improving character quality |
|
|
145 | (3) |
|
Optimization in operation |
|
|
148 | (1) |
|
Recognition of pin-marked digits on metal |
|
|
149 | (3) |
|
|
149 | (1) |
|
|
150 | (1) |
|
Segmentation and classification |
|
|
150 | (2) |
|
Block codes on rolls of film |
|
|
152 | (4) |
|
|
156 | (5) |
|
|
158 | (1) |
|
Print quality inspection in individual regions |
|
|
159 | (1) |
|
Print quality inspection with automatic subdivision |
|
|
160 | (1) |
|
|
161 | (4) |
|
|
165 | (26) |
|
|
165 | (2) |
|
Classification as function approximation |
|
|
167 | (5) |
|
|
167 | (2) |
|
|
169 | (1) |
|
|
170 | (2) |
|
Instance-based classifiers |
|
|
172 | (6) |
|
Nearest neighbor classifier |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
Remarks on instance-based classifiers |
|
|
177 | (1) |
|
Function-based classifiers |
|
|
178 | (5) |
|
|
178 | (1) |
|
Multilayer perceptron-type neural networks |
|
|
179 | (3) |
|
Representation of other classifiers as neural networks |
|
|
182 | (1) |
|
Remarks on the application of neural networks |
|
|
183 | (3) |
|
Composition of the training set |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (5) |
|
|
191 | (30) |
|
|
191 | (1) |
|
|
192 | (9) |
|
|
193 | (3) |
|
|
196 | (4) |
|
|
200 | (1) |
|
Shape checking on a punched part |
|
|
201 | (4) |
|
|
201 | (1) |
|
Modeling contours by lines |
|
|
202 | (3) |
|
Measuring the contour angle |
|
|
205 | (1) |
|
Angle gauging on toothed belt |
|
|
205 | (4) |
|
|
206 | (2) |
|
|
208 | (1) |
|
Shape checking on injection-molded part |
|
|
209 | (4) |
|
|
209 | (2) |
|
Remarks on model circle computation |
|
|
211 | (2) |
|
High accuracy gauging on thread flange |
|
|
213 | (2) |
|
Illumination and image capture |
|
|
213 | (1) |
|
Subpixel-accurate gauging of the thread depth |
|
|
214 | (1) |
|
|
215 | (3) |
|
|
217 | (1) |
|
Inspection-related calibration |
|
|
217 | (1) |
|
|
218 | (3) |
|
Overview: Image Acquisition and Illumination |
|
|
221 | (58) |
|
|
221 | (7) |
|
|
222 | (2) |
|
Properties of CCD sensors |
|
|
224 | (2) |
|
|
226 | (2) |
|
|
228 | (10) |
|
|
228 | (2) |
|
|
230 | (2) |
|
Sampling of the line signal |
|
|
232 | (3) |
|
Extensions of the video standard |
|
|
235 | (1) |
|
|
236 | (2) |
|
|
238 | (5) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (2) |
|
Additional camera properties |
|
|
242 | (1) |
|
Transmission to the computer |
|
|
243 | (6) |
|
Basic operation of a frame grabber |
|
|
244 | (2) |
|
Frame grabbers for standard video cameras |
|
|
246 | (1) |
|
Frame grabbers for other camera types |
|
|
246 | (2) |
|
Direct digital transmission |
|
|
248 | (1) |
|
|
249 | (16) |
|
|
249 | (2) |
|
Thin lens imaging equation |
|
|
251 | (4) |
|
|
255 | (4) |
|
Typical imaging situations |
|
|
259 | (1) |
|
|
260 | (2) |
|
|
262 | (2) |
|
|
264 | (1) |
|
|
265 | (7) |
|
|
266 | (1) |
|
|
267 | (3) |
|
|
270 | (2) |
|
|
272 | (7) |
|
|
279 | (32) |
|
Simple presence verification |
|
|
279 | (9) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
282 | (2) |
|
|
284 | (1) |
|
|
285 | (1) |
|
Segmentation with template matching |
|
|
286 | (2) |
|
Simple gauging for assembly verification |
|
|
288 | (5) |
|
|
288 | (1) |
|
|
289 | (2) |
|
Object creation and measurement computation |
|
|
291 | (1) |
|
|
292 | (1) |
|
Presence verification using classifiers |
|
|
293 | (13) |
|
|
293 | (4) |
|
Inspection of the caulking |
|
|
297 | (5) |
|
Type verification of the flange |
|
|
302 | (4) |
|
Contrast-free presence verification |
|
|
306 | (2) |
|
|
308 | (3) |
|
Overview: Object Features |
|
|
311 | (16) |
|
Basic geometrical features |
|
|
311 | (6) |
|
|
311 | (1) |
|
|
312 | (3) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
317 | (5) |
|
|
317 | (3) |
|
|
320 | (1) |
|
|
321 | (1) |
|
Moments and Fourier descriptors |
|
|
321 | (1) |
|
|
322 | (2) |
|
|
322 | (1) |
|
|
323 | (1) |
|
|
324 | (3) |
|
Outlook: Visual Inspection Projects |
|
|
327 | (4) |
A. Mathematical Notes |
|
331 | (12) |
|
A.1 Backpropagation training |
|
|
331 | (5) |
|
A.1.1 Neural networks -- concept and history |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
333 | (3) |
|
A.2 Computation of the depth of field |
|
|
336 | (7) |
|
|
336 | (3) |
|
A.2.2 Depth of field at infinite distance |
|
|
339 | (1) |
|
A.2.3 Dependence of the depth of field on the focal length |
|
|
340 | (3) |
B. The Companion CD |
|
343 | (2) |
References |
|
345 | (3) |
Index |
|
348 | |