Interpretable AI

by
Format: Nonspecific Binding
Pub. Date: 2022-07-26
Publisher(s): Simon & Schuster
  • Free Shipping Icon

    This Item Qualifies for Free Shipping!*

    *Excludes marketplace orders.

List Price: $61.57

Rent Textbook

Select for Price
There was a problem. Please try again later.

New Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Interpretable AI is a hands-on guide to interpretability techniques that open up the black box of AI.

AI models can become so complex that even experts have difficulty understanding them—and forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! Interpretable AI is filled with cutting-edge techniques that will improve your understanding of how your AI models function.

Interpretable AI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting-edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and open source libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you to identify the patterns your model has learned, and presents best practices for building fair and unbiased models.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Author Biography

Ajay Thampi is a machine learning engineer at a large tech company primarily focused on responsible AI and fairness. He holds a PhD and his research was focused on signal processing and machine learning. He has published papers at leading conferences and journals on reinforcement learning, convex optimization, and classical machine learning techniques applied to 5G cellular networks.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.