|
Teaching Mathematics: Influences and Directions |
|
|
1 | (21) |
|
Influences on Mathematics Education |
|
|
2 | (1) |
|
Physchological Influences |
|
|
2 | (1) |
|
|
2 | (6) |
|
The Framework of the Principles and Standards for School Mathematics |
|
|
3 | (3) |
|
Content Standards and Expectations in Each Grade Band |
|
|
6 | (1) |
|
Integrating the Content and Process Standards |
|
|
6 | (2) |
|
Integrating State and Local Standards with National Math Standards |
|
|
8 | (1) |
|
|
8 | (3) |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
Directions in Mathematics Education |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (2) |
|
Integration with Other School Subjects |
|
|
15 | (1) |
|
Integration with Real-World Settings |
|
|
16 | (1) |
|
Representation of Mathematical Ideas |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
Computation and Estimation |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
Learning and Teaching Mathematics |
|
|
21 | (23) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
The Cognitive/Constructivist Approach |
|
|
22 | (5) |
|
|
23 | (1) |
|
|
23 | (2) |
|
|
25 | (2) |
|
Basic Principles Reviewed |
|
|
27 | (1) |
|
Begin With Concrete Representation |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
31 | (1) |
|
Take Time to Motivate Children |
|
|
32 | (1) |
|
|
32 | (1) |
|
Provide Opportunities for Practice |
|
|
32 | (2) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
The Calculator as Practice Tool |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
34 | (2) |
|
Pre-Planning Considerations |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
36 | (4) |
|
Models for Teaching Mathematics |
|
|
37 | (3) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
Thinking About the Curriculum |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
42 | (2) |
|
Developing Mathematical Thinking and Problem-Solving Ability |
|
|
44 | (20) |
|
Mathematical Considerations |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
Ask Children to Write Problems |
|
|
47 | (1) |
|
|
48 | (1) |
|
The Problem-Solving Process |
|
|
48 | (1) |
|
Understanding the Problem |
|
|
48 | (1) |
|
Devising a Plan to Solve the Problem |
|
|
49 | (1) |
|
Implementing a Solution Plan |
|
|
49 | (1) |
|
Reflecting on the Problem |
|
|
49 | (1) |
|
Problem-Solving Strategies |
|
|
49 | (2) |
|
Dramatize or Model the Situation and Solution Process |
|
|
51 | (1) |
|
Draw a Picture or Diagram |
|
|
52 | (1) |
|
Construct a Table or Chart |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
Consider All Possibilities |
|
|
56 | (1) |
|
|
56 | (1) |
|
Change Your Point of View |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
Selecting Appropriate Tasks and Materials |
|
|
58 | (1) |
|
Problems That Are Motivating and Culturally Relevant |
|
|
58 | (1) |
|
Problems with Missing, Extraneous, or Contradictory Information |
|
|
58 | (1) |
|
Problems That Encourage the Use of Calculators, Computers, and Other Technology |
|
|
58 | (1) |
|
Activities That Require the Use of a Variety of Problem-Solving Strategies |
|
|
58 | (1) |
|
Activities That Promote Communication About Mathematical Thinking |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
Before Children Begin to Solve the Problem |
|
|
59 | (1) |
|
While Children Are Solving the Problem |
|
|
59 | (1) |
|
After Children Solve the Problem |
|
|
59 | (1) |
|
Organizing and Implementing Instruction |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
Assessing Children's Understanding |
|
|
60 | (1) |
|
Changing the Difficulty of Problems |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
Other Factors Contributing to Children's Difficulties in Problem Solving |
|
|
61 | (1) |
|
|
61 | (1) |
|
Beliefs and Affective Factors |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
A Case to Consider the Children |
|
|
62 | (1) |
|
Benefits of Using a Problem-Solving Approach to Mathematics Instruction |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
Assessing Mathematics Understanding |
|
|
64 | (13) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
Individualizing Assessment |
|
|
67 | (8) |
|
|
67 | (1) |
|
Conferences and Interviews |
|
|
68 | (1) |
|
|
69 | (3) |
|
|
72 | (3) |
|
|
75 | (1) |
|
Assessing Attitudes Toward Mathematics |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
Developing Number Concepts |
|
|
77 | (22) |
|
The Foundations of Number |
|
|
78 | (1) |
|
|
78 | (4) |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (1) |
|
One-to-One Correspondence |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
Discrete and Continuous Quantities |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
Counting All, Counting On |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
Pictorial and Graphic Representation of Numbers |
|
|
87 | (1) |
|
Symbolic Representation of Numbers |
|
|
87 | (3) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
One Greater Than, One Less Than |
|
|
91 | (1) |
|
Part-Part-Whole Relationships |
|
|
91 | (4) |
|
Relationship to Five and Ten |
|
|
93 | (1) |
|
|
94 | (1) |
|
Bidirectional Relationship of an Equation |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
Developing Understanding of Numeration |
|
|
99 | (28) |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
100 | (1) |
|
Hindu-Arabic Numeration System |
|
|
100 | (1) |
|
|
100 | (1) |
|
Positional or Place Value |
|
|
101 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
102 | (1) |
|
Understanding Place Value |
|
|
102 | (1) |
|
|
102 | (2) |
|
Communicating mathematics |
|
|
104 | (1) |
|
|
104 | (1) |
|
Equivalent Representations |
|
|
104 | (1) |
|
|
105 | (1) |
|
Developing Two-Digit Numbers |
|
|
106 | (1) |
|
Introducing Base-Ten Blocks |
|
|
107 | (1) |
|
|
108 | (1) |
|
Introducing Nonproportional Materials |
|
|
108 | (3) |
|
|
111 | (1) |
|
Assessing Place-Value Knowledge |
|
|
111 | (1) |
|
What Research Says About Place-Value Learning |
|
|
112 | (1) |
|
Stages in Place-Value Development |
|
|
112 | (1) |
|
|
113 | (1) |
|
Number Meanings: Oral Expressions |
|
|
114 | (1) |
|
Developing Number Relationships |
|
|
114 | (1) |
|
Thinking and Writing About Numbers |
|
|
115 | (1) |
|
Understanding Large Numbers |
|
|
115 | (1) |
|
|
115 | (1) |
|
Writing Consecutive Numbers |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
117 | (1) |
|
Counting to a Thousand and Beyond |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (2) |
|
|
120 | (1) |
|
Consolidating Number Skills |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
Developing Whole-Number Operations: Meaning of Operations |
|
|
127 | (20) |
|
Introduce Operations with Word Problems |
|
|
128 | (1) |
|
A Model for Beginning With Word Problems |
|
|
128 | (1) |
|
Encoding and Decoding Word Problems |
|
|
129 | (1) |
|
Understanding Addition and Subtraction |
|
|
130 | (1) |
|
Types of Addition and Subtraction Word Problems |
|
|
130 | (3) |
|
Examples of Each Problem Type |
|
|
130 | (3) |
|
Using Models to Solve Addition and Subtraction Problems |
|
|
133 | (4) |
|
|
133 | (3) |
|
|
136 | (1) |
|
Writing Number Sentences for Addition and Subtraction |
|
|
137 | (1) |
|
Understanding Multiplication and Division |
|
|
138 | (1) |
|
Types of Multiplication and Division Word Problems |
|
|
138 | (4) |
|
Examples of Each Problem Type |
|
|
138 | (2) |
|
A Note on Multiplication and Division Word Problems |
|
|
140 | (2) |
|
|
142 | (1) |
|
Using Models to Solve Multiplication and Division Problems |
|
|
142 | (2) |
|
Modeling Equal Groups and Multiplicative Comparison Problems |
|
|
142 | (1) |
|
Modeling Area and Array Problems |
|
|
143 | (1) |
|
Modeling Combination Problems |
|
|
143 | (1) |
|
Other Models for Multiplication |
|
|
144 | (1) |
|
An Instructional Sequence for Modeling Multiplication and Division |
|
|
144 | (1) |
|
Another Word About Notation and Children's Language |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
Developing Whole Number Operations: Mastering the Basic Facts |
|
|
147 | (16) |
|
|
148 | (1) |
|
A Three-Step Approach to Fact Mastery |
|
|
148 | (1) |
|
Step 1: Understanding the Meaning of the Operations |
|
|
149 | (1) |
|
Step 2: Using Thinking Strategies to Retrieve Facts |
|
|
149 | (1) |
|
Step 3: Consolidating Activities for Drill and Practice |
|
|
149 | (1) |
|
Addition and Subtraction Facts |
|
|
149 | (1) |
|
Thinking Strategies for Addition and Subtraction |
|
|
150 | (2) |
|
|
150 | (1) |
|
Counting On in Subtraction |
|
|
150 | (1) |
|
|
151 | (1) |
|
One More or One Less Than a Known Fact |
|
|
151 | (1) |
|
|
151 | (1) |
|
Using Thinking Strategies to Organize Instruction |
|
|
152 | (1) |
|
Mathematical Properties of Addition and Subtraction |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (1) |
|
Addition Property of Zero |
|
|
153 | (1) |
|
Fact Families for Addition and Subtraction |
|
|
153 | (1) |
|
Multiplication and Division Facts |
|
|
154 | (1) |
|
Thinking Strategies for Multiplication and Division |
|
|
154 | (2) |
|
|
154 | (1) |
|
|
154 | (1) |
|
Splitting the Product Into Known Parts |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
Mathematical Properties of Multiplication |
|
|
156 | (3) |
|
|
156 | (1) |
|
|
157 | (1) |
|
Distributive Property of Multiplication Over Addition |
|
|
157 | (1) |
|
The Multiplication Property of One |
|
|
158 | (1) |
|
The Role of Zero in Multiplication |
|
|
158 | (1) |
|
A Note on Division by Zero |
|
|
158 | (1) |
|
Fact Families for Multiplication and Division |
|
|
159 | (1) |
|
Consolidating Activities for Drill and Practice |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
162 | (1) |
|
Estimation and Computational Procedures for Whole Numbers |
|
|
163 | (48) |
|
Computational Estimation and Mental Arithmetic |
|
|
165 | (1) |
|
|
165 | (2) |
|
Strategies for Mental Computation |
|
|
165 | (2) |
|
|
167 | (3) |
|
Strategies for Computational Estimation |
|
|
167 | (3) |
|
Paper-and-Pencil Computation |
|
|
170 | (1) |
|
An Instructional Philosophy |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (4) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (6) |
|
Unstructured Concrete Manipulations |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
177 | (2) |
|
Other Addition Algorithms |
|
|
179 | (1) |
|
Common Error Patterns in Addition |
|
|
180 | (1) |
|
|
181 | (8) |
|
Unstructured Concrete Manipulations |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
Interpretations of Subtraction and the Algorithms |
|
|
185 | (1) |
|
Other Subtraction Algorithms |
|
|
186 | (2) |
|
Common Error Patterns in Subtraction |
|
|
188 | (1) |
|
|
189 | (7) |
|
|
189 | (1) |
|
|
190 | (3) |
|
Three- and More-Digit Multipliers |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
193 | (2) |
|
|
195 | (1) |
|
|
195 | (1) |
|
Common Error Patterns in Multiplication |
|
|
195 | (1) |
|
|
196 | (6) |
|
|
197 | (1) |
|
|
197 | (1) |
|
Not Enough Hundreds to Share |
|
|
198 | (1) |
|
|
198 | (1) |
|
Making Sense of Remainders |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
Common Error Patterns in Division |
|
|
201 | (1) |
|
|
202 | (3) |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
210 | (1) |
|
Developing Fraction Concepts |
|
|
211 | (25) |
|
|
212 | (1) |
|
What Do Children Know About Fractions? |
|
|
212 | (1) |
|
What Should Children Understand About Fractions? |
|
|
212 | (1) |
|
Developing Fraction Concepts and Number Sense |
|
|
213 | (1) |
|
Number Sense With Fractions |
|
|
213 | (1) |
|
Assessing Fraction Number Sense |
|
|
213 | (1) |
|
Developing the Meaning of Half |
|
|
213 | (1) |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
216 | (1) |
|
Different Interpretations of Fractions |
|
|
216 | (10) |
|
Part-Whole Interpretations |
|
|
218 | (2) |
|
|
220 | (6) |
|
Other Interpretations of Fractions |
|
|
226 | (1) |
|
Developing Comparison and Ordering of Fractions |
|
|
226 | (1) |
|
Comparing and Ordering Fractions |
|
|
226 | (2) |
|
Using a Calculator to Compare Fractions |
|
|
228 | (1) |
|
Relative Size of Fractions |
|
|
228 | (1) |
|
Improper Fractions and Mixed Numbers |
|
|
228 | (2) |
|
Using the Math Explorer Calculator |
|
|
230 | (1) |
|
Understanding Equivalent Fractions |
|
|
230 | (1) |
|
|
230 | (2) |
|
Renaming and Simplifying Fractions |
|
|
232 | (2) |
|
Renaming and Simplifying Fractions With a Calculator |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
Developing Fraction Computation |
|
|
236 | (22) |
|
Prerequisites for Fraction Computation |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
Connecting Operations on Whole Numbers With Operations on Fractions |
|
|
238 | (1) |
|
|
239 | (1) |
|
Addition and Subtraction of Fractions |
|
|
239 | (1) |
|
Developing Addition Procedures |
|
|
240 | (4) |
|
|
242 | (2) |
|
Developing Subtraction Procedures |
|
|
244 | (2) |
|
Early Subtraction Activities |
|
|
244 | (1) |
|
|
245 | (1) |
|
Symbolic Fraction Algorithm |
|
|
246 | (1) |
|
Multiplication and Division of Fractions |
|
|
246 | (1) |
|
|
246 | (1) |
|
Developing Fraction Multiplication |
|
|
247 | (5) |
|
Multiplying a Fraction by a Whole Number |
|
|
247 | (1) |
|
Multiplying a Whole Number by a Fraction |
|
|
248 | (1) |
|
Multiplying a Fraction by a Fraction |
|
|
249 | (1) |
|
Multiplying Mixed Numbers |
|
|
250 | (2) |
|
|
252 | (1) |
|
Developing Fraction Division |
|
|
252 | (3) |
|
Whole Number Divided by a Fraction: Even Division |
|
|
252 | (1) |
|
Whole Number Divided by a Fraction: Uneven Division |
|
|
253 | (1) |
|
Fraction Divisor and Whole Number Dividend |
|
|
253 | (1) |
|
Fraction Divisor and Dividend |
|
|
253 | (1) |
|
|
253 | (1) |
|
Developing a Symbolic Division Algorithm |
|
|
253 | (2) |
|
Computing Fractions With a Calculator |
|
|
255 | (1) |
|
Mental Arithmetic and Estimation |
|
|
255 | (1) |
|
Assessing Fraction Knowledge |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
257 | (1) |
|
Developing Decimal Concepts and Computation |
|
|
258 | (22) |
|
Instructional Considerations |
|
|
260 | (1) |
|
Connections to Familiar Concepts |
|
|
260 | (3) |
|
|
260 | (3) |
|
Fraction Number Connection |
|
|
263 | (1) |
|
Reading and Writing Decimals |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
Developing Decimal Number Sense |
|
|
264 | (1) |
|
|
264 | (1) |
|
A ``Tens'' Block as the Unit |
|
|
264 | (1) |
|
A ``Hundreds'' Block as the Unit |
|
|
265 | (1) |
|
A ``Thousands'' Block (Large Cube) as the Unit |
|
|
265 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
266 | (2) |
|
|
267 | (1) |
|
|
268 | (1) |
|
Other Materials to Model Decimals |
|
|
268 | (1) |
|
|
268 | (1) |
|
Ordering and Comparing Decimals |
|
|
268 | (1) |
|
|
269 | (1) |
|
|
270 | (2) |
|
|
272 | (3) |
|
|
275 | (1) |
|
|
276 | (1) |
|
Writing Fractions as Decimals |
|
|
277 | (1) |
|
Using the Math Explorer Calculator |
|
|
277 | (1) |
|
Terminating and Repeating Decimals |
|
|
278 | (1) |
|
Writing Decimals as Fractions |
|
|
278 | (1) |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
Understanding Ratio, Proportion, and Percent |
|
|
280 | (13) |
|
|
281 | (1) |
|
|
281 | (1) |
|
Ratio and Rational Number |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
Fraction and Decimal Equivalents |
|
|
287 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
288 | (1) |
|
Finding the Percent of a Number |
|
|
288 | (2) |
|
|
290 | (1) |
|
Other Procedures for Solving Percent Problems |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
291 | (1) |
|
Assessment and Instruction |
|
|
291 | (1) |
|
Assessing Proportional Reasoning |
|
|
291 | (1) |
|
Everyday Life Problem Settings |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
Developing Geometric Thinking and Spatial Sense |
|
|
293 | (31) |
|
Development of Geometric Thinking |
|
|
295 | (1) |
|
The van Hiele Levels of Geometric Thought |
|
|
295 | (1) |
|
Comments on the Levels of Thought |
|
|
296 | (1) |
|
Other Instructional Notes |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
297 | (1) |
|
Connecting With the World |
|
|
297 | (1) |
|
|
297 | (1) |
|
Things That Change and Things That Do Not Change |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
Learning About Euclidean Geometry |
|
|
298 | (1) |
|
|
298 | (4) |
|
|
299 | (3) |
|
Learning About Three-Dimensional Shapes |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
302 | (2) |
|
Learning About Two-Dimensional Figures |
|
|
304 | (1) |
|
|
304 | (6) |
|
|
306 | (1) |
|
|
306 | (3) |
|
|
309 | (1) |
|
Learning About Symmetry, Congruence, and Similarity |
|
|
310 | (1) |
|
|
310 | (2) |
|
Congruence and Similarity |
|
|
312 | (1) |
|
Learning About Transformational Geometry |
|
|
313 | (1) |
|
|
313 | (1) |
|
Learning About Tessellations |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
316 | (2) |
|
|
318 | (1) |
|
|
318 | (1) |
|
Dissection Motion Operations |
|
|
319 | (1) |
|
Learning About Coordinate Geometry |
|
|
320 | (1) |
|
Learning About Curve Stitching |
|
|
321 | (1) |
|
|
322 | (1) |
|
|
322 | (1) |
|
|
322 | (1) |
|
|
323 | (1) |
|
|
323 | (1) |
|
Developing Measurement Concepts and Skills |
|
|
324 | (28) |
|
Concepts and Instructional Sequence |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
326 | (4) |
|
Perception and Direct Comparison |
|
|
326 | (1) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
330 | (1) |
|
Problem Solving and Applications |
|
|
330 | (1) |
|
Summary of Teaching Sequence |
|
|
330 | (1) |
|
Teaching Strategies and Learning Activities |
|
|
330 | (1) |
|
|
330 | (5) |
|
Length: Perception and Direct Comparison |
|
|
331 | (1) |
|
Length: Nonstandard Units |
|
|
331 | (1) |
|
|
332 | (3) |
|
|
335 | (4) |
|
Perception and Direct Comparison |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
336 | (3) |
|
|
339 | (2) |
|
Perception and Direct Comparison |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
341 | (2) |
|
Perception and Direct Comparison |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
343 | (2) |
|
Perception and Direct Comparison |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
345 | (2) |
|
Perception and Direct Comparison |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
Perception and Direct Comparison |
|
|
347 | (1) |
|
|
348 | (1) |
|
|
348 | (3) |
|
Perception and Direct Comparison |
|
|
348 | (1) |
|
|
349 | (1) |
|
|
349 | (2) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
Collecting, Organizing, and Interpreting Data |
|
|
352 | (31) |
|
Collecting and Organizing Data |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
356 | (6) |
|
|
356 | (1) |
|
|
357 | (1) |
|
|
358 | (2) |
|
|
360 | (2) |
|
|
362 | (1) |
|
|
363 | (3) |
|
Histograms, Line Plots, and Stem-and-Leaf Plots |
|
|
366 | (1) |
|
Histograms and Line Plots |
|
|
366 | (1) |
|
|
366 | (1) |
|
Computer-Generated Graphs |
|
|
367 | (1) |
|
Interpreting Data: Statistics |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
368 | (3) |
|
|
369 | (1) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
371 | (2) |
|
|
371 | (2) |
|
Interpretation Data: Probability |
|
|
373 | (1) |
|
|
373 | (1) |
|
General Teaching Considerations |
|
|
374 | (6) |
|
|
374 | (1) |
|
|
375 | (3) |
|
|
378 | (2) |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
382 | (1) |
|
Developing Integers and Algebraic Thinking |
|
|
383 | (19) |
|
|
385 | (1) |
|
|
385 | (1) |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (2) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
389 | (1) |
|
|
390 | (1) |
|
Expressions and Number Sentences |
|
|
390 | (1) |
|
|
390 | (1) |
|
|
391 | (2) |
|
|
393 | (1) |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
395 | (1) |
|
Variables and Computer Programs |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
396 | (1) |
|
Patterns and Relationships |
|
|
397 | (1) |
|
Function Machines and Tables |
|
|
397 | (1) |
|
|
397 | (1) |
|
|
398 | (1) |
|
|
398 | (1) |
|
Instruction and Assessment Activities |
|
|
398 | (2) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
Appendix: Blackline Masters |
|
402 | (17) |
References |
|
419 | (10) |
Index |
|
429 | |