1. Introduction |
|
1 | (21) |
|
1. The scope of matrix algebra |
|
|
1 | (2) |
|
2. General description of a matrix |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
6 | (5) |
|
|
11 | (1) |
|
6. Definition of a matrix |
|
|
12 | (3) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (5) |
2. Basic Operations |
|
22 | (38) |
|
1. The transpose of a matrix |
|
|
22 | (2) |
|
a. A reflexive operation, |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (3) |
|
|
24 | (2) |
|
b. General specification, |
|
|
26 | (1) |
|
c. Transposing a partitioned matrix, |
|
|
26 | (1) |
|
d. Partitioning into vectors, |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
7. Equality and the null matrix |
|
|
31 | (1) |
|
|
32 | (18) |
|
a. The inner product of two vectors, |
|
|
32 | (1) |
|
b. A matrix–vector product, |
|
|
33 | (3) |
|
c. A product of two matrices, |
|
|
36 | (2) |
|
d. Existence of matrix products, |
|
|
38 | (1) |
|
e. Products with vectors, |
|
|
39 | (3) |
|
f. Products with scalars, |
|
|
42 | (1) |
|
g. Products with null matrices, |
|
|
43 | (1) |
|
h. Products with diagonal matrices, |
|
|
43 | (1) |
|
|
44 | (1) |
|
j. The transpose of a product, |
|
|
44 | (1) |
|
k. The trace of a product, |
|
|
45 | (1) |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (62) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
10. Contrasts with scalar algebra |
|
|
52 | (1) |
|
|
53 | (7) |
3. Special Matrices |
|
60 | (24) |
|
|
60 | (5) |
|
a. Products of symmetric matrices, |
|
|
61 | (1) |
|
b. Properties of AA' and A'A, |
|
|
61 | (2) |
|
|
63 | (1) |
|
d. Sums of outer products, |
|
|
64 | (1) |
|
|
65 | (1) |
|
f. Skew-symmetric matrices, |
|
|
65 | (1) |
|
2. Matrices having all elements equal |
|
|
65 | (3) |
|
|
68 | (1) |
|
|
69 | (4) |
|
|
69 | (2) |
|
|
71 | (14) |
|
|
71 | (1) |
|
|
72 | (1) |
|
(iii) Householder matrices, |
|
|
72 | (1) |
|
|
73 | (3) |
|
6. Positive definite matrices |
|
|
76 | (2) |
|
|
78 | (6) |
4. Determinants |
|
84 | (35) |
|
|
84 | (6) |
|
a. First- and second-order determinants, |
|
|
85 | (1) |
|
b. Third-order determinants, |
|
|
86 | (3) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (7) |
|
a. Determinant of a transpose, |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
93 | (2) |
|
d. Adding multiples of a row (column) to a row (column), |
|
|
95 | (1) |
|
|
96 | (5) |
|
(i) Reduction to triangular form, |
|
|
96 | (1) |
|
|
97 | (1) |
|
(iii) Determinant of a product, |
|
|
98 | (1) |
|
4. Elementary row operations |
|
|
99 | (4) |
|
|
101 | (1) |
|
b. A row (column) of zeros, |
|
|
102 | (1) |
|
c. Interchanging rows (columns), |
|
|
102 | (1) |
|
d. Adding a row to a multiple of a row, |
|
|
102 | (1) |
|
|
103 | (3) |
|
|
106 | (3) |
|
|
109 | (2) |
|
8. Sums and differences of determinants |
|
|
111 | (1) |
|
|
112 | (7) |
5. Inverse Matrices |
|
119 | (36) |
|
1. Introduction: solving equations |
|
|
119 | (4) |
|
|
123 | (2) |
|
3. Cofactors of a determinant |
|
|
125 | (1) |
|
4. Derivation of the inverse |
|
|
125 | (4) |
|
5. Conditions for existence of the inverse |
|
|
129 | (1) |
|
6. Properties of the inverse |
|
|
130 | (1) |
|
7. Some simple special cases |
|
|
131 | (2) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
133 | (6) |
|
a. Solving linear equations, |
|
|
133 | (3) |
|
(i) Age distributions in wild populations, |
|
|
133 | (1) |
|
(ii) Input–output analysis in economics, |
|
|
134 | (2) |
|
(iii) Least squares equations, |
|
|
136 | (1) |
|
b. Algebraic simplifications, |
|
|
136 | (3) |
|
9. Computers and inverses |
|
|
139 | (9) |
|
a. The arithmetic of linear equations, |
|
|
140 | (2) |
|
|
142 | (17) |
|
|
143 | (1) |
|
|
144 | (1) |
|
(iii) Solving linear equations, |
|
|
145 | (2) |
|
10. Left and right inverses |
|
|
147 | (1) |
|
|
148 | (7) |
6. Rank |
|
155 | (29) |
|
1. Linear combinations of vectors |
|
|
155 | (2) |
|
2. Linear transformations |
|
|
157 | (2) |
|
3. Linear dependence and independence |
|
|
159 | (3) |
|
|
159 | (2) |
|
b. General characteristics, |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
(iii) Existence and non-uniqueness of nonzero a's, |
|
|
161 | (1) |
|
|
161 | (1) |
|
4. Linearly dependent vectors |
|
|
162 | (4) |
|
a. At least two a's are nonzero, |
|
|
162 | (1) |
|
b. Vectors are linear combinations of others, |
|
|
162 | (1) |
|
c. Partitioning matrices, |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
f Testing for dependence (simple cases), |
|
|
164 | (2) |
|
5. Linearly independent (LIN) vectors |
|
|
166 | (3) |
|
a. Nonzero determinants and inverse matrices, |
|
|
166 | (1) |
|
b. Linear combinations of LIN vectors, |
|
|
167 | (1) |
|
c. A maximum number of LIN vectors, |
|
|
167 | (2) |
|
6. The number of LIN rows and columns in a matrix |
|
|
169 | (2) |
|
|
171 | (1) |
|
8. Rank and inverse matrices |
|
|
172 | (1) |
|
|
173 | (2) |
|
10. Full-rank factorization |
|
|
175 | (2) |
|
|
175 | (2) |
|
|
177 | (1) |
|
c. Matrices of full row (column) rank, |
|
|
177 | (1) |
|
|
177 | (4) |
|
|
178 | (1) |
|
|
178 | (1) |
|
c. Spanning sets and bases, |
|
|
179 | (1) |
|
d. Many spaces of order n, |
|
|
179 | (1) |
|
|
180 | (1) |
|
f. The range and null space of a matrix, |
|
|
180 | (1) |
|
|
181 | (3) |
7. Canonical Forms |
|
184 | (28) |
|
|
184 | (2) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
2. Rank and the elementary operators |
|
|
186 | (1) |
|
|
186 | (1) |
|
b. Products of elementary operators, |
|
|
186 | (1) |
|
|
187 | (1) |
|
3. Finding the rank of a matrix |
|
|
187 | (3) |
|
a. Some special LIN vectors, |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
4. Reduction to equivalent canonical form |
|
|
190 | (6) |
|
|
190 | (1) |
|
|
191 | (1) |
|
c. The equivalent canonical form, |
|
|
192 | (2) |
|
d. Non-uniqueness of P and Q, |
|
|
194 | (1) |
|
|
194 | (1) |
|
f Full-rank factorization, |
|
|
194 | (2) |
|
5. Rank of a product matrix |
|
|
196 | (3) |
|
|
199 | (6) |
|
a. Row and column operations, |
|
|
199 | (1) |
|
|
200 | (1) |
|
c. The canonical form under congruence, |
|
|
201 | (1) |
|
d Two special provisions, |
|
|
202 | (3) |
|
|
202 | (1) |
|
(ii) Negative elements in the diagonal form, |
|
|
203 | (2) |
|
e. Full-rank factorization, |
|
|
205 | (1) |
|
7. Non-negative definite matrices |
|
|
205 | (4) |
|
a. Diagonal elements and principal minors, |
|
|
205 | (1) |
|
b. Congruent canonical form, |
|
|
206 | (1) |
|
c. Full-rank factorization, |
|
|
206 | (1) |
|
d. Quadratic forms as sums of squares, |
|
|
206 | (2) |
|
e. Full row (column) rank matrices, |
|
|
208 | (1) |
|
|
209 | (3) |
8. Generalized Inverses |
|
212 | (15) |
|
1. The Moore—Penrose inverse |
|
|
212 | (1) |
|
|
212 | (4) |
|
a. Derivation from row operations, |
|
|
214 | (1) |
|
b. Derivation from the diagonal form, |
|
|
215 | (1) |
|
3. Other names and symbols |
|
|
216 | (1) |
|
|
217 | (2) |
|
|
217 | (1) |
|
|
217 | (2) |
|
5. Arbitrariness in a generalized inverse |
|
|
219 | (1) |
|
|
220 | (2) |
|
a. Non-negative definite matrices, |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (1) |
|
|
222 | (5) |
9. Solving Linear Equations |
|
227 | (30) |
|
1. Equations having many solutions |
|
|
227 | (1) |
|
|
228 | (5) |
|
|
228 | (1) |
|
b. Existence of solutions, |
|
|
229 | (3) |
|
c. Tests for consistency, |
|
|
232 | (1) |
|
3. Equations having one solution |
|
|
233 | (2) |
|
4. Deriving solutions using generalized inverses |
|
|
235 | (4) |
|
|
235 | (1) |
|
b. Obtaining many solutions, |
|
|
236 | (1) |
|
c. All possible solutions, |
|
|
237 | (2) |
|
d. Combinations of solutions, |
|
|
239 | (1) |
|
5. Linearly independent solutions |
|
|
239 | (3) |
|
6. An invariance property |
|
|
242 | (3) |
|
|
245 | (4) |
|
|
245 | (1) |
|
|
246 | (2) |
|
c. Orthogonal vector spaces, |
|
|
248 | (1) |
|
|
249 | (2) |
|
9. Least squares equations |
|
|
251 | (1) |
|
|
252 | (5) |
10. Partitioned Matrices |
|
257 | (15) |
|
|
257 | (1) |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
261 | (2) |
|
|
263 | (2) |
|
|
265 | (2) |
|
|
267 | (5) |
11. Eigenvalues and Eigenvectors |
|
272 | (48) |
|
1. Introduction: age distribution vectors |
|
|
272 | (2) |
|
2. Derivation of eigenvalues |
|
|
274 | (2) |
|
3. Elementary properties of eigenvalues |
|
|
276 | (3) |
|
a. Eigenvalues of powers of a matrix, |
|
|
276 | (1) |
|
b. Eigenvalues of a scalar-by-matrix product, |
|
|
277 | (1) |
|
c. Eigenvalues of polynomials, |
|
|
277 | (1) |
|
d. The sum and product of eigenvalues, |
|
|
278 | (1) |
|
4. Calculating eigenvectors |
|
|
279 | (3) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (1) |
|
5. The similar canonical form |
|
|
282 | (8) |
|
|
282 | (3) |
|
|
285 | (5) |
|
|
290 | (3) |
|
|
290 | (1) |
|
b. Symmetric matrices are diagonable, |
|
|
290 | (1) |
|
c. Eigenvectors are orthogonal, |
|
|
290 | (2) |
|
(i) Different eigenvalues, |
|
|
291 | (1) |
|
(ii) Multiple eigenvalues, |
|
|
291 | (1) |
|
(iii) The canonical form under orthogonal similarity, |
|
|
291 | (1) |
|
d. Rank equals number of nonzero eigenvalues, |
|
|
292 | (1) |
|
|
293 | (5) |
|
8. Factoring the characteristic equation |
|
|
298 | (1) |
|
|
299 | (6) |
|
11A. Appendix to Chapter 11 |
|
|
305 | (13) |
|
1. Proving the diagonability theorem |
|
|
305 | (3) |
|
a. The number of nonzero eigenvalues never exceeds rank, |
|
|
305 | (1) |
|
b. A lower bound on r(A — λkI), |
|
|
306 | (1) |
|
c. Proof of the diagonability theorem, |
|
|
307 | (1) |
|
d All symmetric matrices are diagonable, |
|
|
307 | (1) |
|
2. Other results for symmetric matrices |
|
|
308 | (6) |
|
a. Spectral decomposition, |
|
|
308 | (1) |
|
b. Non-negative definite (n.n.d.) matrices, |
|
|
309 | (3) |
|
c. Simultaneous diagonalization of two symmetric matrices, |
|
|
312 | (2) |
|
3. The Cayley—Hamilton theorem |
|
|
314 | (2) |
|
4. The singular-value decomposition |
|
|
316 | (2) |
|
|
318 | (2) |
12. Miscellanea |
|
320 | (26) |
|
1. Orthogonal matrices—a summary |
|
|
320 | (1) |
|
2. Idempotent matrices—a summary |
|
|
320 | (2) |
|
3. The matrix a I + bJ—a summary |
|
|
322 | (1) |
|
4. Non-negative definite matrices—a summary |
|
|
322 | (1) |
|
5. Canonical forms and other decompositions—a summary |
|
|
323 | (2) |
|
|
325 | (1) |
|
a. Functions of matrices, |
|
|
325 | (1) |
|
b. Matrices of functions, |
|
|
325 | (1) |
|
7. Iterative solution of nonlinear equations |
|
|
326 | (1) |
|
8. Vectors of differential operators |
|
|
327 | (5) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
329 | (3) |
|
9. Vec and vech operators |
|
|
332 | (28) |
|
|
332 | (1) |
|
|
333 | (1) |
|
c. Vec-permutation matrices, |
|
|
334 | (1) |
|
d Relationships between vec and vech, |
|
|
334 | (1) |
|
10. Other calculus results |
|
|
334 | (7) |
|
a. Differentiating inverses, |
|
|
335 | (1) |
|
b. Differentiating traces, |
|
|
335 | (1) |
|
c. Differentiating determinants, |
|
|
336 | (2) |
|
|
338 | (2) |
|
|
340 | (1) |
|
|
341 | (1) |
|
11. Matrices with elements that are complex numbers |
|
|
341 | (1) |
|
|
342 | (4) |
13. Applications in Statistics |
|
346 | (17) |
|
1. Variance—covariance matrices |
|
|
347 | (1) |
|
|
348 | (1) |
|
3. Matrices of sums of squares and cross-products |
|
|
349 | (3) |
|
|
349 | (1) |
|
b. Uncorrected sums of squares and products, |
|
|
349 | (1) |
|
c. Means, and the centering matrix, |
|
|
350 | (1) |
|
d. Corrected sums of squares and products, |
|
|
351 | (1) |
|
4. The multivariate normal distribution |
|
|
352 | (3) |
|
5. Quadratic forms and χ²-distributions |
|
|
355 | (2) |
|
6. Least squares equations |
|
|
357 | (1) |
|
|
358 | (2) |
|
|
360 | (3) |
14. The Matrix Algebra of Regression Analysis |
|
363 | (29) |
|
|
363 | (3) |
|
|
364 | (1) |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
366 | (2) |
|
3. Several regressor variables |
|
|
368 | (1) |
|
|
369 | (2) |
|
|
371 | (1) |
|
6. Unbiasedness and variances |
|
|
372 | (1) |
|
|
373 | (1) |
|
8. Estimating the error variance |
|
|
374 | (2) |
|
9. Partitioning the total sum of squares |
|
|
376 | (2) |
|
|
378 | (1) |
|
11. The no-intercept model |
|
|
379 | (1) |
|
|
380 | (2) |
|
13. Testing linear hypotheses |
|
|
382 | (4) |
|
|
382 | (1) |
|
|
383 | (2) |
|
c. Equivalent statements of a hypothesis, |
|
|
385 | (1) |
|
|
386 | (9) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
15. Fitting subsets of the x-variables |
|
|
387 | (2) |
|
16. Reductions in sums of squares: the R(·|·) notation |
|
|
389 | (3) |
15. An Introduction to Linear Statistical Models |
|
392 | (37) |
|
|
392 | (3) |
|
|
395 | (2) |
|
|
395 | (1) |
|
|
396 | (1) |
|
3. Solving the normal equations |
|
|
397 | (2) |
|
a. Generalized inverses of X'X, |
|
|
397 | (1) |
|
|
397 | (2) |
|
4. Expected values and variances |
|
|
399 | (1) |
|
|
400 | (1) |
|
6. Estimating the error variance |
|
|
401 | (2) |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
7. Partitioning the total sum of squares |
|
|
403 | (1) |
|
8. Coefficient of determination |
|
|
404 | (1) |
|
|
405 | (2) |
|
|
407 | (1) |
|
|
408 | (3) |
|
12. Testing linear hypotheses |
|
|
411 | (4) |
|
|
415 | (1) |
|
14. Some particular models |
|
|
416 | (8) |
|
a. The one-way classification, |
|
|
416 | (2) |
|
b. Two-way classification, no interactions, balanced data, |
|
|
418 | (4) |
|
c. Two-way classification, no interactions, unbalanced data, |
|
|
422 | (2) |
|
15. The R(·|·) notation (Continued) |
|
|
424 | (5) |
References |
|
429 | (4) |
Index |
|
433 | |