Power Systems Analysis and Design

by ; ;
Edition: 4th
Format: Hardcover
Pub. Date: 2007-05-18
Publisher(s): CL Engineering
  • Free Shipping Icon

    This Item Qualifies for Free Shipping!*

    *Excludes marketplace orders.

List Price: $400.74

Buy New

Arriving Soon. Will ship when available.
$381.66

Rent Textbook

Select for Price
There was a problem. Please try again later.

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

The new edition of Power Systems Analysis and Design text provides students with an introduction to the basic concepts of power systems along with tools to aid them in applying these skills to real world situations. Physical concepts are highlighted while also giving necessary attention to mathematical techniques. Both theory and modeling are developed from simple beginnings so that they can be readily extended to new and complex situations. The authors incorporate new tools and material to aid students with design issues and reflect recent trends in the field.

Table of Contents

Introduction Case Study: The Future Beckons
History of Electric Power Systems
Present and Future Trends
Electric Utility Industry Structure
Computers in Power System Engineering
PowerWorld Simulator
Fundamentals Case Study: Distributed Generation ? Semantic Hype or the Dawn of a New Era
Phasors
Instantaneous Power in Single-Phase ac Circuits
Complex Power
Network Equations
Balanced Three-Phase Circuits
Power in Balanced Three-Phase Circuits
Advantages of Balanced Three-Phase vs. Single-Phase Systems
Power Transformers Case Study: Life Extension and Condition Assessment
The Ideal Transformer
Equivalent Circuits for Practical Transformers
The Per-Unit System
Three-Phase Transformer Connections and Phase Shift
Per-Unit Equivalent Circuits of Balanced Three-Phase Two-Winding Transformers
Three-Winding Transformers
Autotransformers
Transformers with Off-Nominal Turns Ratios
Transmission-Line Parameters Case Study: Transmission Line Conductor Design Comes of Age
Case Study: Mammoth 765-kV Project
Transmission Line Design Considerations
Resistance
Conductance
Inductance: Solid Cylindrical Conductor
Inductance: Single-Phase Two Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing
Inductance: Composite Conductors, Unequal Phase Spacing, Bundled Conductors
Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return
Electric Field and Voltage: Solid Cylindrical Conductor
Capacitance: Single-Phase Two Wire Line and Three-Phase Three-Wire Line with Equal Phase SpacingCapacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors
Shunt Admittances: Lines with Neutral Conductors and Earth Return
Electric Field Strength at Conductor Surfaces and at Ground Level
Parallel Circuit Three-Phase Lines
Transmission Lines: Steady-State Operation Case Study: The FACTS on Resolving Transmission Gridlock
Medium and Short Line Approximations
Transmission-Line Differential Equations
Equivalent ð Circuit
Lossless Lines
Maximum Power Flow
Line Loadability
Reactive Compensation Techniques
Power Flows Case Study: Visualizing the Electric Grid
Direct Solutions to Linear Algebraic Equations: Gauss Elimination
Iterative Solutions to Linear Algebraic Equations: Jacobi and Gauss-Seidel
Iterative Solutions to nonlinear Algebraic Equations: Newton-Raphson
The Power-Flow Problem
Power-Flow Solution by Gauss-Seidel
Power-Flow Solution by Newton-Raphson
Control of Power Flow
Sparsity Techniques
Fast Decoupled Power Flow
Design Projects
Symmetrical Faults Case Study: The Problem of Arcing Faults in Low-Voltage Power Distribution Systems
Series R-L Circuit Transients
Three-Phase Short Circuit ? Unloaded Synchronous Machine
Power System Three-Phase Short Circuits
Bus Impedance Matrix
Circuit Breaker and Fuse Selection
Design Project
Symmetrical Components Definition of symmetrical Components
Sequence Networks of Impedance Loads
Sequence Networks of Series Impedances
Sequence Networks of Three-Phase Lines
Sequence Networks of Rotating Machines
Per-Unit Sequence Models of Three-Phase Two-Winding Transformers
Per-Unit Sequence Models of Three-Phase Three-Winding Transformers
Power in Sequence Networks
Unsymmetrical Faults Case Study: Fires at U.S. Utilities
System Representation
Single Line-to-Ground Fault
Line-to-Line Fault
Double Line-to-Ground Fault
Sequence Bus Impedance Matrices
Design Projects
System Protection Case Study: Blackouts and Relaying Considerations
System Protection Components
Instrument Transformers
Overcurrent Relays
Radial System Protection
Reclosers and Fuses
Directional Relays
Protection of Two-Source System with Directional Relays
Zones of Protection
Line Protection with Impedance (Distance) Relays
Differential relays
Bus Protection with Differential Relays
transformer Protection with Differential relays
Table of Contents provided by Publisher. All Rights Reserved.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.