Preface |
|
xi | |
1 Introduction |
|
1 | (16) |
|
|
1 | (4) |
|
|
1 | (1) |
|
|
2 | (2) |
|
1.1.3 Outline of the work |
|
|
4 | (1) |
|
1.2 Basic principles of protein structure |
|
|
5 | (264) |
|
1.2.1 The shapes and sizes of proteins |
|
|
6 | (1) |
|
1.2.2 The hydrophobic core |
|
|
7 | (1) |
|
1.2.3 Secondary structure |
|
|
8 | (1) |
|
|
9 | (2) |
|
1.2.5 Barrel structures and β-helices |
|
|
11 | (2) |
|
|
13 | (2) |
|
|
15 | (2) |
PART 1 GEOMETRY |
|
17 | (114) |
|
2 Ellipsoids and embedding |
|
|
19 | (30) |
|
2.1 Geometric representations of structure |
|
|
19 | (15) |
|
|
19 | (3) |
|
|
22 | (4) |
|
|
26 | (1) |
|
|
27 | (5) |
|
2.1.5 The shapes of proteins |
|
|
32 | (2) |
|
|
34 | (15) |
|
|
35 | (5) |
|
2.2.2 Interpretation of the eigenvalues |
|
|
40 | (1) |
|
2.2.3 Hierarchical inertial embedding |
|
|
41 | (4) |
|
|
45 | (2) |
|
2.2.5 Practical method specification |
|
|
47 | (2) |
|
|
49 | (44) |
|
3.1 Secondary structure geometries |
|
|
49 | (14) |
|
3.1.1 Secondary structure line segments |
|
|
50 | (5) |
|
3.1.2 Secondary structure definition |
|
|
55 | (2) |
|
3.1.3 Comparison to standard definitions |
|
|
57 | (4) |
|
3.1.4 Applications and further developments |
|
|
61 | (2) |
|
3.2 Simplified architectures |
|
|
63 | (1) |
|
|
63 | (2) |
|
3.2.2 Calibrating segment packing |
|
|
65 | (3) |
|
3.2.3 Layer architectures |
|
|
68 | (2) |
|
3.2.4 Layer-based stick models |
|
|
70 | (3) |
|
3.2.5 Polyhedra-based stick models |
|
|
73 | (9) |
|
3.2.6 Packing nomenclatures |
|
|
82 | (3) |
|
|
85 | (2) |
|
|
87 | (1) |
|
3.2.9 Uniqueness of string descriptors |
|
|
87 | (2) |
|
3.2.10 Predicting helix contacts |
|
|
89 | (4) |
|
|
93 | (40) |
|
|
93 | (25) |
|
|
93 | (1) |
|
4.1.2 Geometric models for a twisted sheet |
|
|
94 | (5) |
|
4.1.3 The surface of a twisted sheet |
|
|
99 | (12) |
|
4.1.4 Sheet bend and curl |
|
|
111 | (2) |
|
|
113 | (5) |
|
|
118 | (15) |
|
4.2.1 Hyperbolic surfaces |
|
|
118 | (2) |
|
|
120 | (1) |
|
4.2.3 Cylindrical β-barrels |
|
|
121 | (4) |
|
4.2.4 Hyperbolic ,β-barrels |
|
|
125 | (4) |
|
|
129 | (2) |
PART 2 CLASSIFICATION |
|
131 | (78) |
|
|
133 | (26) |
|
5.1 Hydrogen bond networks |
|
|
133 | (10) |
|
5.1.1 α-carbon-based β-sheet definition |
|
|
134 | (2) |
|
|
136 | (1) |
|
5.1.3 TBC angle distribution |
|
|
136 | (2) |
|
5.1.4 βbarrel identification |
|
|
138 | (2) |
|
5.1.5 β-sheet classification |
|
|
140 | (3) |
|
5.2 Protein domain definitions |
|
|
143 | (16) |
|
|
143 | (1) |
|
|
144 | (2) |
|
5.2.3 Model evolution and domain extraction |
|
|
146 | (1) |
|
5.2.4 Conforming to expectation |
|
|
147 | (2) |
|
5.2.5 Setting the granularity level |
|
|
149 | (2) |
|
5.2.6 Performance and examples |
|
|
151 | (4) |
|
5.2.7 Simultaneous definition on multiple structures |
|
|
155 | (1) |
|
5.2.8 Probabilistic definitions |
|
|
156 | (1) |
|
|
157 | (2) |
|
6 Protein structure comparison |
|
|
159 | (21) |
|
6.1 Overview of comparison methods |
|
|
159 | (13) |
|
6.1.1 Structure representations and degrees of difficulty |
|
|
160 | (1) |
|
|
161 | (1) |
|
6.1.3 Geometric hashing approach |
|
|
162 | (2) |
|
6.1.4 Using structural superposition |
|
|
164 | (1) |
|
|
165 | (2) |
|
6.1.6 Iterated double dynamic programming |
|
|
167 | (2) |
|
6.1.7 Secondary structure graph matching |
|
|
169 | (1) |
|
6.1.8 Stick-figure comparisons |
|
|
170 | (2) |
|
6.2 Assessment of significance |
|
|
172 | (8) |
|
6.2.1 Score distributions from known structures |
|
|
173 | (1) |
|
6.2.2 Random structural models |
|
|
174 | (1) |
|
6.2.3 Randomized alignment models |
|
|
175 | (1) |
|
6.2.4 Scoring and biological significance |
|
|
176 | (1) |
|
|
177 | (3) |
|
7 Classification and fold spaces |
|
|
180 | (31) |
|
7.1 Protein structure classification |
|
|
180 | (5) |
|
7.1.1 Practical approaches to classification |
|
|
180 | (2) |
|
7.1.2 Organization of the classifications |
|
|
182 | (1) |
|
7.1.3 Analysis of the classifications |
|
|
183 | (2) |
|
|
185 | (2) |
|
7.2.1 Distance geometry projection |
|
|
185 | (2) |
|
7.2.2 Simplified fold space |
|
|
187 | (1) |
|
7.3 A 'periodic table' for protein structures |
|
|
187 | (11) |
|
7.3.1 Classification using ideal stick forms |
|
|
187 | (1) |
|
7.3.2 Structure layers become valance shells |
|
|
188 | (3) |
|
7.3.3 Matching against all stick forms |
|
|
191 | (4) |
|
7.3.4 Reintroducing topology |
|
|
195 | (2) |
|
7.3.5 Expanding the classification tables |
|
|
197 | (1) |
|
7.4 'Evolutionary' steps in fold space |
|
|
198 | (13) |
|
7.4.1 Matching ideal forms |
|
|
200 | (1) |
|
7.4.2 Largest common fold |
|
|
200 | (3) |
|
7.4.3 Trees of structures |
|
|
203 | (4) |
|
7.4.4 Links and islands in fold space |
|
|
207 | (2) |
PART 3 TOPOLOGY |
|
209 | (60) |
|
8 Folds, tangles and knots |
|
|
211 | (38) |
|
|
211 | (16) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
212 | (2) |
|
8.1.4 True topology of proteins |
|
|
214 | (2) |
|
8.1.5 Pseudo-topology of proteins |
|
|
216 | (7) |
|
8.1.6 Topology of weak links in proteins |
|
|
223 | (2) |
|
8.1.7 Generalized protein knots |
|
|
225 | (2) |
|
8.1.8 Knots in random chains |
|
|
227 | (1) |
|
8.2 Random walks in fold space |
|
|
227 | (11) |
|
|
229 | (1) |
|
8.2.2 Secondary structure based fake proteins |
|
|
230 | (2) |
|
8.2.3 Off-lattice fold combinatorics |
|
|
232 | (4) |
|
8.2.4 Classifying topology in fake proteins |
|
|
236 | (1) |
|
8.2.5 Local versus global folding |
|
|
237 | (1) |
|
8.3 Protein fold complexity |
|
|
238 | (11) |
|
8.3.1 Topological indices |
|
|
238 | (5) |
|
8.3.2 Local and non-local packing |
|
|
243 | (5) |
|
8.3.3 Smoothing folds away |
|
|
248 | (1) |
|
9 Structure prediction and modelling |
|
|
249 | (20) |
|
9.1 Random folds from distance geometry |
|
|
249 | (9) |
|
9.1.1 Outline of the projection strategy |
|
|
249 | (1) |
|
9.1.2 Model specification |
|
|
250 | (2) |
|
|
252 | (3) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
255 | (3) |
|
9.2 Modelling with distance geometry |
|
|
258 | (3) |
|
9.2.1 Generic preferences |
|
|
258 | (1) |
|
9.2.2 Specific interactions |
|
|
259 | (1) |
|
9.2.3 Sources of real data |
|
|
260 | (1) |
|
9.3 Protein tertiary structure prediction |
|
|
261 | (10) |
|
9.3.1 Ab initio prediction |
|
|
262 | (1) |
|
|
263 | (2) |
|
|
265 | (2) |
|
9.3.4 Genetic algorithm approach |
|
|
267 | (2) |
PART 4 SYMMETRY |
|
269 | (39) |
|
|
271 | (22) |
|
|
271 | (9) |
|
10.1.1 Symmetry from domain duplication |
|
|
272 | (5) |
|
10.1.2 Symmetries from secondary structure |
|
|
277 | (3) |
|
10.2 A Fourier analysis of symmetry |
|
|
280 | (13) |
|
10.2.1 Internal protein structure comparison |
|
|
281 | (1) |
|
10.2.2 Smoothing the score matrix |
|
|
282 | (1) |
|
|
283 | (2) |
|
10.2.4 Visualizing repeats |
|
|
285 | (1) |
|
10.2.5 Analysis of total power |
|
|
286 | (2) |
|
10.2.6 Removing expected symmetries |
|
|
288 | (1) |
|
10.2.7 Assessment of the Fourier approach |
|
|
289 | (1) |
|
10.2.8 Origin of structural symmetry |
|
|
290 | (3) |
|
|
293 | (15) |
|
11.1 Evolution of structure and function |
|
|
293 | (10) |
|
11.1.1 Gene duplication and fusion |
|
|
294 | (1) |
|
|
295 | (2) |
|
11.1.3 Models of structure evolution |
|
|
297 | (3) |
|
11.1.4 Evolution of function |
|
|
300 | (1) |
|
11.1.5 Selection on random folds |
|
|
301 | (2) |
|
11.2 The origins of proteins |
|
|
303 | (3) |
|
11.2.1 The emergence of proteins in an RNA world |
|
|
303 | (1) |
|
11.2.2 Functions for protoproteins |
|
|
304 | (2) |
|
|
306 | (2) |
References |
|
308 | (17) |
Contents |
|
325 | |