1. INTRODUCTION AND MOTIVATION |
|
1 | (77) |
|
1.1. The Place and Aims of Robust Statistics |
|
|
1 | (17) |
|
1.1a. What Is Robust Statistics? |
|
|
1 | (7) |
|
1.1b. The Relation to Some Other Key Words in Statistics, |
|
|
8 | (3) |
|
1.1c. The Aims of Robust Statistics, |
|
|
11 | (3) |
|
|
14 | (4) |
|
1.2. Why Robust Statistics? |
|
|
18 | (16) |
|
1.2a. The Role of Parametric Models, |
|
|
18 | (2) |
|
1.2b. Types of Deviations from Parametric Models, |
|
|
20 | (5) |
|
1.2c. The Frequency of Gross Errors, |
|
|
25 | (3) |
|
1.2d. The Effects of Mild Deviations from a Parametric Model, |
|
|
28 | (3) |
|
1.2e. How Necessary Are Robust Procedures? |
|
|
31 | (3) |
|
1.3. The Main Approaches towards a Theory of Robustness |
|
|
34 | (22) |
|
1.3a. Some Historical Notes, |
|
|
34 | (2) |
|
1.3b. Huber's Minimax Approach for Robust Estimation, |
|
|
36 | (3) |
|
1.3c. Huber's Second Approach to Robust Statistics via Robustified Likelihood Ratio Tests, |
|
|
39 | (1) |
|
1.3d. The Approach Based on Influence Functions, |
|
|
40 | (7) |
|
1.3e. The Relation between the Minimax Approach and the Approach Based on Influence Functions, |
|
|
47 | (5) |
|
1.3f. The Approach Based on Influence Functions as a Robustified Likelihood Approach, and Its Relation to Various Statistical Schools, |
|
|
52 | (4) |
|
1.4. Rejection of Outliers and Robust Statistics |
|
|
56 | (15) |
|
1.4a. Why Rejection of Outliers? |
|
|
56 | (6) |
|
1.4b. How Well Are Objective and Subjective Methods for the Rejection of Outliers Doing in the Context of Robust Estimation? |
|
|
62 | (9) |
|
|
71 | (7) |
2. ONE-DIMENSIONAL ESTIMATORS |
|
78 | (109) |
|
2.0. An Introductory Example |
|
|
78 | (3) |
|
2.1. The Influence Function |
|
|
81 | (15) |
|
2.1a. Parametric Models, Estimators, and Functionals, |
|
|
81 | (2) |
|
2.1b. Definition and Properties of the Influence Function, |
|
|
83 | (4) |
|
2.1c. Robustness Measures Derived from the Influence Function, |
|
|
87 | (1) |
|
2.1d. Some Simple Examples, |
|
|
88 | (4) |
|
2.1e. Finite-Sample Versions, |
|
|
92 | (4) |
|
2.2. The Breakdown Point and Qualitative Robustness |
|
|
96 | (4) |
|
2.2a. Global Reliability: The Breakdown Point, |
|
|
96 | (2) |
|
2.2b. Continuity and Qualitative Robustness, |
|
|
98 | (2) |
|
2.3. Classes of Estimators |
|
|
100 | (16) |
|
|
100 | (8) |
|
|
108 | (2) |
|
|
110 | (3) |
|
2.3d. Other Types of Estimators: A, D, P, S, W, |
|
|
113 | (3) |
|
2.4. Optimally Bounding the Gross-Error Sensitivity |
|
|
116 | (9) |
|
2.4a. The General Optimality Result, |
|
|
116 | (3) |
|
|
119 | (3) |
|
|
122 | (2) |
|
|
124 | (1) |
|
2.5. The Change-of-Variance Function |
|
|
125 | (24) |
|
|
125 | (6) |
|
2.5b. B-Robustness versus V-Robustness, |
|
|
131 | (2) |
|
2.5c. The Most Robust Estimator, |
|
|
133 | (1) |
|
2.5d. Optimal Robust Estimators, |
|
|
134 | (5) |
|
2.5e. M-Estimators for Scale, |
|
|
139 | (5) |
|
|
144 | (5) |
|
2.6. Redescending M-Estimators |
|
|
149 | (23) |
|
|
149 | (5) |
|
2.6b. Most Robust Estimators, |
|
|
154 | (4) |
|
2.6c. Optimal Robust Estimators, |
|
|
158 | (10) |
|
2.6d. Schematic Summary of Sections 2.5 and 2.6, |
|
|
168 | (1) |
|
2.6e. Redescending M-Estimators for Scale, |
|
|
168 | (4) |
|
2.7. Relation with Huber's Minimax Approach |
|
|
172 | (6) |
|
|
178 | (9) |
3. ONE-DIMENSIONAL TESTS |
|
187 | (38) |
|
|
187 | (2) |
|
3.2. The Influence Function for Tests |
|
|
189 | (15) |
|
3.2a. Definition of the Influence Function, |
|
|
189 | (5) |
|
3.2b. Properties of the Influence Function, |
|
|
194 | (4) |
|
3.2c. Relation with Level and Power, |
|
|
198 | (4) |
|
3.2d Connection with Shift Estimators, |
|
|
202 | (2) |
|
|
204 | (5) |
|
3.3a. The One-Sample Case, |
|
|
204 | (2) |
|
3.3b. The Two-Sample Case, |
|
|
206 | (3) |
|
3.4. Optimally Bounding the Gross-Error Sensitivity |
|
|
209 | (3) |
|
3.5. Extending the Change-of-Variance Function to Tests |
|
|
212 | (3) |
|
|
215 | (4) |
|
3.6a. Lambert's Approach, |
|
|
215 | (3) |
|
|
218 | (1) |
|
3.7. M-Tests for a Simple Alternative |
|
|
219 | (2) |
|
|
221 | (4) |
4. MULTIDIMENSIONAL ESTIMATORS |
|
225 | (45) |
|
|
225 | (1) |
|
|
226 | (12) |
|
4.2a. Influence Function, |
|
|
226 | (2) |
|
4.2b. Gross-Error Sensitivities, |
|
|
228 | (2) |
|
|
230 | (2) |
|
4.2d. Example: Location and Scale, |
|
|
232 | (6) |
|
|
238 | (14) |
|
4.3a. The Unstandardized Case, |
|
|
238 | (5) |
|
4.3b. The Optimal B-Robust Estimators, |
|
|
243 | (3) |
|
4.3c. Existence and Uniqueness of the Optimal ψ-Functions, |
|
|
246 | (1) |
|
4.3d. How to Obtain Optimal Estimators, |
|
|
247 | (5) |
|
4.4. Partitioned Parameters |
|
|
252 | (5) |
|
4.4a. Introduction: Location and Scale, |
|
|
252 | (1) |
|
4.4b. Optimal Estimators, |
|
|
253 | (4) |
|
|
257 | (3) |
|
4.5a. Models Generated by Transformations, |
|
|
257 | (1) |
|
4.5b. Models and Invariance, |
|
|
257 | (2) |
|
4.5c. Equivariant Estimators, |
|
|
259 | (1) |
|
|
260 | (6) |
|
4.6a. Admissible B-Robust Estimators, |
|
|
260 | (3) |
|
4.6b. Calculation of M-Estimates, |
|
|
263 | (3) |
|
|
266 | (4) |
5. ESTIMATION OF COVARIANCE MATRICES AND MULTIVARIATE LOCATION |
|
270 | (37) |
|
|
270 | (1) |
|
|
271 | (4) |
|
|
271 | (3) |
|
|
274 | (1) |
|
5.3. Equivariant Estimators |
|
|
275 | (14) |
|
5.3a. Orthogonally Equivariant Vector Functions and d-Type Matrices, |
|
|
275 | (5) |
|
|
280 | (3) |
|
|
283 | (6) |
|
5.4. Optimal and Most B-Robust Estimators |
|
|
289 | (7) |
|
|
289 | (4) |
|
5.4b. Partitioned Parameter, |
|
|
293 | (3) |
|
5.5. Breakdown Properties of Covariance Matrix Estimators |
|
|
296 | (7) |
|
5.5a. Breakdown Point of M-Estimators, |
|
|
296 | (3) |
|
5.5b. Breakdown at the Edge, |
|
|
299 | (1) |
|
5.5c. An Estimator with Breakdown Point ½, |
|
|
300 | (3) |
|
|
303 | (4) |
6. LINEAR MODELS: ROBUST ESTIMATION |
|
307 | (35) |
|
|
307 | (4) |
|
|
307 | (1) |
|
6.1b. The Model and the Classical Least-Squares Estimates, |
|
|
308 | (3) |
|
|
311 | (4) |
|
6.3. M-Estimators for Linear Models |
|
|
315 | (13) |
|
6.3a. Definition, Influence Function, and Sensitivities, |
|
|
315 | (3) |
|
6.3b. Most B-Robust and Optimal B-Robust Estimators, |
|
|
318 | (5) |
|
6.3c. The Change-of-Variance Function; Most V-Robust and Optimal V-Robust Estimators, |
|
|
323 | (5) |
|
|
328 | (10) |
|
|
328 | (3) |
|
6.4b. Asymptotic Behavior of Bounded Influence Estimators, |
|
|
331 | (4) |
|
|
335 | (2) |
|
6.4d. Related Approaches, |
|
|
337 | (1) |
|
|
338 | (4) |
7. LINEAR MODELS: ROBUST TESTING |
|
342 | (45) |
|
|
342 | (3) |
|
|
342 | (1) |
|
7.1b. The Test Problem in Linear Models, |
|
|
343 | (2) |
|
7.2. A General Class of Tests for Linear Models |
|
|
345 | (13) |
|
7.2a. Definition of τ-Test, |
|
|
345 | (2) |
|
7.2b. Influence Function and Asymptotic Distribution, |
|
|
347 | (7) |
|
|
354 | (4) |
|
7.3. Optimal Bounded Influence Tests |
|
|
358 | (9) |
|
|
358 | (1) |
|
7.3b The Optimal Mallows-Type Test, |
|
|
359 | (1) |
|
7.3c. The Optimal Test for the General M-Regression, |
|
|
360 | (6) |
|
7.3d. A Robust Procedure for Model Selection, |
|
|
366 | (1) |
|
7.4. C(α)-Type Tests for Linear Models |
|
|
367 | (9) |
|
7.4a. Definition of a C(α)-Type Test, |
|
|
368 | (1) |
|
7.4b. Influence Function and Asymptotic Power of C(α)-Type Tests, |
|
|
369 | (4) |
|
7.4c. Optimal Robust C(&alapha;)-Type Tests, |
|
|
373 | (1) |
|
7.4d. Connection with an Asymptotically Minimax Test, |
|
|
373 | (3) |
|
|
376 | (9) |
|
7.5a. Computation of Optimal n Functions, |
|
|
376 | (1) |
|
7.5b. Computation of the Asymptotic Distribution of the τ-Test Statistic, |
|
|
377 | (1) |
|
7.5c. Asymptotic Behavior of Different Tests for Simple Regression, |
|
|
378 | (5) |
|
7.5d. A Numerical Example, |
|
|
383 | (2) |
|
|
385 | (2) |
8. COMPLEMENTS AND OUTLOOK |
|
387 | (52) |
|
8.1. The Problem of Unsuspected Serial Correlations, or Violation of the Independence Assumption |
|
|
387 | (10) |
|
8.1a. Empirical Evidence for Semi-systematic Errors, |
|
|
387 | (2) |
|
8.1b. The Model of Self-Similar Processes for Unsuspected Serial Correlations, |
|
|
389 | (2) |
|
8.1c. Some Consequences of the Model of Self-Similar Processes, |
|
|
391 | (4) |
|
8.1d. Estimation of the Long-Range Intensity of Serial Correlations, |
|
|
395 | (1) |
|
8.1e. Some Further Problems of Robustness against Serial Correlations, |
|
|
396 | (1) |
|
8.2. Some Frequent Misunderstandings about Robust Statistics |
|
|
397 | (19) |
|
8.2a. Some Common Objections against Huber's Minimax Approach, |
|
|
397 | (6) |
|
8.2b. "Robust Statistics Is Not Necessary, Because...', |
|
|
403 | (3) |
|
8.2c. Some Details on Redescending Estimators, |
|
|
406 | (3) |
|
8.2d. What Can Actually Be Estimated? |
|
|
409 | (7) |
|
8.3. Robustness in Time Series |
|
|
416 | (6) |
|
|
416 | (1) |
|
8.3b. The Influence Function for Time Series, |
|
|
417 | (5) |
|
8.3c. Other Robustness Problems in Time Series, |
|
|
422 | (1) |
|
8.4. Some Special Topics Related to the Breakdown Point |
|
|
422 | (10) |
|
8.4a. Most Robust (Median-Type) Estimators on the Real Line, |
|
|
422 | (3) |
|
8.4b. Special Structural Aspects of the Analysis of Variance, |
|
|
425 | (7) |
|
8.5. Small-Sample Asymptotics |
|
|
432 | (6) |
|
|
432 | (1) |
|
8.5b. Small-Sample Asymptotics for M-Estimators, |
|
|
433 | (5) |
|
8.5c. Further Applications, |
|
|
438 | (1) |
|
|
438 | (1) |
REFERENCES |
|
439 | (26) |
INDEX |
|
465 | |