List of Contributing Authors and Laboratories |
|
ix | |
Preface |
|
xi | |
Chapter 1: GENERAL INTRODUCTION TO SAMPLE-CONTROLLED THERMAL ANALYSIS (SCTA) |
|
|
J. Rouquerol and O. Toft Sorensen |
|
|
|
1.1. Spirit and Definition of SCTA |
|
|
1 | (2) |
|
|
3 | (3) |
|
|
6 | (2) |
Chapter 2: A FRAMEWORK FOR THE SCTA FAMILY |
|
|
J. Rouquerol and O. Toft Sorensen |
|
|
|
2.1. Representing the Specificity of SCTA |
|
|
8 | (3) |
|
2.2. Simple Distinction Between the Various Forms of SCTA |
|
|
11 | (3) |
|
|
14 | (1) |
|
|
14 | (2) |
Chapter 3: BASIC SCTA TECHNIQUES |
|
|
J. Rouquerol and O. Toft Sorensen |
|
|
|
|
16 | (1) |
|
3.2. Constant Rate Thermal Analysis |
|
|
17 | (11) |
|
3.2.1. Constant Heat-Flow Thermal Analysis or Constant rate DTA |
|
|
17 | (2) |
|
3.2.2. Constant Rate Evolved Gas Detection (CR-EGD) |
|
|
19 | (7) |
|
3.2.3. Constant Rate Thermogravimetry (CR-TG) |
|
|
26 | (2) |
|
3.2.4. Constant Rate Thermodilatometry(CR-TD) |
|
|
28 | (1) |
|
3.3. Varying Rate Thermal Analysis |
|
|
28 | (6) |
|
3.3.1. Rate-Jump EGD and Rate-Jump TG |
|
|
28 | (3) |
|
3.3.2. Controlled Rate Evolved Gas Analysis (CR-EGA) |
|
|
31 | (2) |
|
3.3.3. Increasing Rate Thermal Analysis |
|
|
33 | (1) |
|
3.3.4. Modulated Rate EGD and Modulated Rate TG |
|
|
34 | (1) |
|
3.4. Alternate Rate- and Temperature-Controlled Thermal Analysis |
|
|
34 | (15) |
|
3.4.1. Stepwise Isothermal Analysis (SIA) |
|
|
35 | (2) |
|
3.4.2. Forced Stepwise Isothermal Analysis (FSIA) |
|
|
37 | (1) |
|
3.4.3. Stepwise Temperature Modulated DSC (MTDSC) (M. Reading) |
|
|
37 | (7) |
|
3.4.4. The Proportional Heating Rate TA (PHTA) (P. Barnes, E. Fesenko, G.M.B. Parkes) |
|
|
44 | (2) |
|
3.4.5. The "Max Res" Technique (M. Reading) |
|
|
46 | (2) |
|
3.4.6. The Dynamic Heating Technique (M. Reading) |
|
|
48 | (1) |
|
3.5. Combined Rate and Temperature-Controlled Thermal Analysis |
|
|
49 | (3) |
|
3.5.1. High Resolution Thermogravimetry (M. Reading) |
|
|
49 | (3) |
|
3.6. Sample Controlled Thermomicroscopy (E.L. Charsley, C. Stewart) |
|
|
52 | (4) |
|
|
53 | (1) |
|
3.6.2. Results and Discussion |
|
|
54 | (2) |
|
3.7. Sample Controlled Reaction Rate by Gas Blending Techniques (P. Barnes, E. Fesenko, G.M.B. Parkes) |
|
|
56 | (3) |
|
|
59 | (3) |
Chapter 4: SCTA AND KINETICS |
|
|
J.M. Criado and L.A. Pérez-Maqueda |
|
|
|
|
62 | (1) |
|
4.2. The Fundamental Problem with the Kinetics of Heterogeneous Reactions |
|
|
62 | (1) |
|
4.3. The Fundamental Problem with Non-Isothermal Kinetics |
|
|
63 | (6) |
|
|
69 | (4) |
|
4.5. Kinetic Analysis of CRTA Curves |
|
|
73 | (1) |
|
4.6. The Shape of CRTA Curves |
|
|
73 | (5) |
|
|
78 | (4) |
|
4.8. Rate-Jump and Related Methods |
|
|
82 | (4) |
|
4.9. Relationship between CRTA and other SCTA Methods |
|
|
86 | (4) |
|
4.10. Unified Theory for Kinetic Analysis of Solid State Reactions |
|
|
90 | (3) |
|
4.11. Comparison of Resolution Power of CRTA and Conventional Non-Isothermal Methods: A Kinetic Approach |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
96 | (6) |
Chapter 5: SCTA AND CERAMICS |
|
|
|
|
|
102 | (1) |
|
5.2. Sample Controlled Thermogravimetry |
|
|
102 | (12) |
|
5.2.1. Stepwise Isothermal analysis of Ba-oxalate |
|
|
102 | (5) |
|
5.2.2. Stepwise Isothermal analysis of Pure and Doped Ce-carbonates |
|
|
107 | (4) |
|
5.2.3. Forced Stepwise Isothermal Analysis of Ce-carbonates |
|
|
111 | (2) |
|
5.2.4. Binder Removal Studied by SCTA |
|
|
113 | (1) |
|
5.3. Dilatometric SCTA Measurements |
|
|
114 | (11) |
|
|
114 | (2) |
|
5.3.2. Sintering Kinetics |
|
|
116 | (9) |
|
5.4. SCTA and Material Synthesis (J.M. Criado) |
|
|
125 | (6) |
|
|
131 | (4) |
Chapter 6: SCTA AND ADSORBENTS |
|
|
P. Llewellyn, F. Rouquerol and J. Rouquerol |
|
|
|
|
135 | (1) |
|
6.2. SCTA and Adsorbents Preparation |
|
|
136 | (22) |
|
|
137 | (12) |
|
|
149 | (2) |
|
|
151 | (4) |
|
6.2.4. Ordered Mesoporous Materials |
|
|
155 | (3) |
|
6.3. SCTA and Adsorbents Characterization |
|
|
158 | (9) |
|
|
158 | (1) |
|
6.3.2. Quasi-Isothermal Thermodesorption |
|
|
158 | (5) |
|
6.3.3. Constant Rate Thermodesorption |
|
|
163 | (4) |
|
6.4. SCTA and Adsorbent Outgassing |
|
|
167 | (3) |
|
|
170 | (1) |
|
|
171 | (3) |
Chapter 7: SCTA AND CATALYSIS |
|
|
E.A. Fesenko, P.A. Barnes and G.M.B. Parkes |
|
|
|
7.1. Sample Controlled Thermolysis |
|
|
174 | (20) |
|
7.1.1. Decomposition of Complex Precursors |
|
|
174 | (7) |
|
7.1.2. Variation in Reaction Pathway during CRTA preparation of catalysts |
|
|
181 | (4) |
|
7.1.3. Texture and Structure of catalysts prepared using CRTA |
|
|
185 | (4) |
|
7.1.4. Effects of Self generated atmospheres on Catalysts Preparation |
|
|
189 | (5) |
|
7.2. Redox Reactions Using Temperature and Concentration Control |
|
|
194 | (17) |
|
|
195 | (12) |
|
|
207 | (4) |
|
|
211 | (11) |
|
7.3.1. Surface-Catalysed Reactions in a Controlled Environment |
|
|
212 | (6) |
|
7.3.2. Energetics of Surface Elimination Processes |
|
|
218 | (4) |
|
|
222 | (4) |
Chapter 8: SCTA IN THE FUTURE |
|
|
|
|
|
226 | (1) |
|
|
226 | (4) |
|
8.2.1. Macro Scale Sensors |
|
|
226 | (1) |
|
8.2.2. Nano Scale Sensors |
|
|
227 | (3) |
|
8.3. New Types of Measurements for SCTA |
|
|
230 | (3) |
|
8.4. Optimising Resolution and The Parameter Space Problem |
|
|
233 | (1) |
|
8.5. Peak Shape Recognition |
|
|
233 | (7) |
|
8.6. Which Algorithm for Best Resolution |
|
|
240 | (1) |
|
8.7. SCTA when Dealing with Multiple Parameters |
|
|
241 | (3) |
|
|
244 | (1) |
|
|
245 | (2) |
Subject Index |
|
247 | |