Preface |
|
xv | |
Acknowledgments |
|
xvii | |
About the Author |
|
xix | |
Nomenclature |
|
xxi | |
Chapter 1 Introduction to Separation Process Engineering |
|
1 | (11) |
|
1.1. Importance of Separations |
|
|
1 | (1) |
|
1.2. Concept of Equilibrium |
|
|
2 | (2) |
|
|
4 | (1) |
|
1.4. Problem-Solving Methods |
|
|
5 | (2) |
|
1.5. Prerequisite Material |
|
|
7 | (1) |
|
1.6. Other Resources on Separation Process Engineering |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (2) |
Chapter 2 Flash Distillation |
|
12 | (53) |
|
2.1. Basic Method of Flash Distillation |
|
|
12 | (2) |
|
2.2. Form and Sources of Equilibrium Data |
|
|
14 | (2) |
|
2.3. Graphical Representation of Binary VLE |
|
|
16 | (5) |
|
2.4. Binary Flash Distillation |
|
|
21 | (8) |
|
2.4.1. Sequential Solution Procedure |
|
|
21 | (6) |
|
Example 2-1. Flash separator for ethanol and water |
|
|
24 | (3) |
|
2.4.2. Simultaneous Solution Procedure |
|
|
27 | (2) |
|
|
29 | (5) |
|
2.6. Multicomponent Flash Distillation |
|
|
34 | (6) |
|
Example 2-2. Multicomponent flash distillation |
|
|
37 | (3) |
|
2.7. Simultaneous Multicomponent Convergence |
|
|
40 | (5) |
|
Example 2-3. Simultaneous convergence for flash distillation |
|
|
43 | (2) |
|
|
45 | (4) |
|
Example 2-4. Calculation of drum size |
|
|
47 | (2) |
|
2.9. Utilizing Existing Flash Drums |
|
|
49 | (1) |
|
2.10. Summary— Objectives |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (7) |
|
Appendix Computer Simulation of Flash Distillation |
|
|
59 | (6) |
Chapter 3 Introduction to Column Distillation |
|
65 | (21) |
|
3.1. Developing a Distillation Cascade |
|
|
65 | (7) |
|
3.2. Distillation Equipment |
|
|
72 | (2) |
|
|
74 | (2) |
|
3.4. External Column Balances |
|
|
76 | (5) |
|
Example 3-1. External balances for binary distillation |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (5) |
Chapter 4 Column Distillation: Internal Stage-by-Stage Balances |
|
86 | (75) |
|
|
86 | (4) |
|
4.2. Binary Stage-by-Stage Solution Methods |
|
|
90 | (7) |
|
Example 4-1. Stage-by-stage calculations by the Lewis method |
|
|
94 | (3) |
|
4.3. Introduction to the McCabe-Thiele Method |
|
|
97 | (4) |
|
|
101 | (8) |
|
Example 4-2. Feed line calculations |
|
|
106 | (3) |
|
4.5. Complete McCabe-Thiele Method |
|
|
109 | (3) |
|
Example 4-3. McCabe-Thiele method |
|
|
109 | (3) |
|
4.6. Profiles for Binary Distillation |
|
|
112 | (2) |
|
|
114 | (4) |
|
Example 4-4. McCabe-Thiele analysis of open steam heating |
|
|
114 | (4) |
|
4.8. General McCabe-Thiele Analysis Procedure |
|
|
118 | (7) |
|
Example 4-5. Distillation with two feeds |
|
|
120 | (5) |
|
4.9. Other Distillation Column Situations |
|
|
125 | (5) |
|
4.9.1. Partial Condensers |
|
|
125 | (1) |
|
|
126 | (1) |
|
4.9.3. Side Streams or Withdrawal Lines |
|
|
126 | (2) |
|
4.9.4. Intermediate Reboilers and Intermediate Condensers |
|
|
128 | (1) |
|
4.9.5. Stripping and Enriching Columns |
|
|
129 | (1) |
|
4.10. Limiting Operating Conditions |
|
|
130 | (3) |
|
|
133 | (2) |
|
4.12. Simulation Problems |
|
|
135 | (1) |
|
4.13. New Uses for Old Columns |
|
|
136 | (2) |
|
4.14. Subcooled Reflux and Superheated Boilup |
|
|
138 | (2) |
|
4.15. Comparisons between Analytical and Graphical Methods |
|
|
140 | (2) |
|
4.16. Summary— Objectives |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (13) |
|
Appendix Computer Simulations for Binary Distillation |
|
|
157 | (4) |
Chapter 5 Introduction to Multicomponent Distillation |
|
161 | (15) |
|
5.1. Calculational Difficulties |
|
|
161 | (6) |
|
Example 5-1. External mass balances using fractional recoveries |
|
|
164 | (3) |
|
5.2. Profiles for Multicomponent Distillation |
|
|
167 | (5) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
172 | (4) |
Chapter 6 Exact Calculation Procedures for Multicomponent Distillation |
|
176 | (29) |
|
6.1. Introduction to Matrix Solution for Multicomponent Distillation |
|
|
176 | (2) |
|
6.2. Component Mass Balances in Matrix Form |
|
|
178 | (3) |
|
6.3. Initial Guess for Flow Rates |
|
|
181 | (1) |
|
6.4. Bubble-Point Calculations |
|
|
181 | (3) |
|
Example 6-1. Bubble-point temperature |
|
|
183 | (1) |
|
6.5. theta-Method of Convergence |
|
|
184 | (7) |
|
Example 6-2. Matrix calculation and theta-convergence |
|
|
186 | (5) |
|
6.6. Energy Balances in Matrix Form |
|
|
191 | (3) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (5) |
|
Appendix Computer Simulations for Multicomponent Column Distillation |
|
|
200 | (5) |
Chapter 7 Approximate Shortcut Methods for Multicomponent Distillation |
|
205 | (20) |
|
7.1. Total Reflux: Fenske Equation |
|
|
205 | (5) |
|
Example 7-1. Fenske equation |
|
|
209 | (1) |
|
7.2. Minimum Reflux: Underwood Equations |
|
|
210 | (5) |
|
Example 7-2. Underwood equations |
|
|
214 | (1) |
|
7.3. Gilliland Correlation for Number of Stages at Finite Reflux Ratio |
|
|
215 | (4) |
|
Example 7-3. Gilliland correlation |
|
|
217 | (2) |
|
|
219 | (1) |
|
|
219 | (1) |
|
|
220 | (5) |
Chapter 8 Introduction to Complex Distillation Methods |
|
225 | (51) |
|
8.1. Breaking Azeotropes with Other Separators |
|
|
225 | (2) |
|
8.2. Binary Heterogeneous Azeotropic Distillation Processes |
|
|
227 | (7) |
|
8.2.1. Binary Heterogeneous Azeotropes |
|
|
227 | (3) |
|
8.2.2. Drying Organic Compounds That Are Partially Miscible with Water |
|
|
230 | (10) |
|
Example 8-1. Drying benzene by distillation |
|
|
232 | (2) |
|
|
234 | (4) |
|
Example 8-2. Steam distillation. |
|
|
235 | (3) |
|
8.4. Two-Pressure Distillation Processes |
|
|
238 | (2) |
|
8.5. Complex Ternary Distillation Systems |
|
|
240 | (6) |
|
8.5.1. Distillation Curves |
|
|
240 | (3) |
|
|
243 | (3) |
|
8.6. Extractive Distillation |
|
|
246 | (5) |
|
8.7. Azeotropic Distillation with Added Solvent |
|
|
251 | (3) |
|
8.8. Distillation with Chemical Reaction |
|
|
254 | (4) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
260 | (10) |
|
Appendix Simulation of Complex Distillation Systems |
|
|
270 | (6) |
Chapter 9 Batch Distillation |
|
276 | (25) |
|
9.1. Binary Batch Distillation: Rayleigh Equation |
|
|
278 | (1) |
|
9.2. Simple Binary Batch Distillation |
|
|
279 | (4) |
|
Example 9-1. Simple Rayleigh distillation |
|
|
281 | (2) |
|
9.3. Constant-Level Batch Distillation |
|
|
283 | (1) |
|
9.4. Batch Steam Distillation |
|
|
284 | (1) |
|
9.5. Multistage Batch Distillation |
|
|
285 | (6) |
|
9.5.1. Constant Reflux Ratio |
|
|
286 | (4) |
|
Example 9-2. Multistage batch distillation |
|
|
286 | (4) |
|
9.5.2. Variable Reflux Ratio |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
293 | (8) |
Chapter 10 Staged and Packed Column Design |
|
301 | (53) |
|
10.1. Staged Column Equipment Description |
|
|
301 | (8) |
|
10.1.1. Trays, Downcomers, and Weirs |
|
|
304 | (2) |
|
10.1.2. Inlets and Outlets |
|
|
306 | (3) |
|
|
309 | (5) |
|
Example 10-1. Overall efficiency estimation |
|
|
312 | (2) |
|
10.3. Column Diameter Calculations |
|
|
314 | (6) |
|
Example 10-2. Diameter calculation for tray column |
|
|
318 | (2) |
|
10.4. Sieve Tray Layout and Tray Hydraulics |
|
|
320 | (7) |
|
Example 10-3. Tray layout and hydraulics |
|
|
324 | (3) |
|
|
327 | (2) |
|
10.6. Introduction to Packed Column Design |
|
|
329 | (1) |
|
10.7. Packed Column Internals |
|
|
329 | (2) |
|
10.8. Height of Packing: HETP Method |
|
|
331 | (2) |
|
10.9. Packed Column Flooding and Diameter Calculation |
|
|
333 | (8) |
|
Example 10-4. Packed column diameter calculation |
|
|
338 | (3) |
|
10.10. Economic Trade-Offs |
|
|
341 | (4) |
|
10.11. Summary— Objectives |
|
|
345 | (1) |
|
|
345 | (3) |
|
|
348 | (6) |
Chapter 11 Economics and Energy Conservation in Distillation |
|
354 | (31) |
|
|
354 | (5) |
|
11.2. Operating Effects on Costs |
|
|
359 | (7) |
|
Example 11-1. Cost estimate for distillation |
|
|
364 | (2) |
|
11.3. Changes in Plant Operating Rates |
|
|
366 | (1) |
|
11.4. Energy Conservation in Distillation |
|
|
366 | (4) |
|
11.5. Synthesis of Column Sequences for Almost Ideal Multicomponent Distillation |
|
|
370 | (6) |
|
Example 11-2. Sequencing columns with heuristics |
|
|
374 | (2) |
|
11.6. Synthesis of Distillation Systems for Nonideal Ternary Systems |
|
|
376 | (4) |
|
Example 11-3. Process development for separation of complex ternary mixture |
|
|
378 | (2) |
|
11.7. Summary— Objectives |
|
|
380 | (1) |
|
|
380 | (2) |
|
|
382 | (3) |
Chapter 12 Absorption and Stripping |
|
385 | (39) |
|
12.1. Absorption and Stripping Equilibria |
|
|
387 | (2) |
|
12.2. Operating Lines for Absorption |
|
|
389 | (5) |
|
Example 12-1. Graphical absorption analysis |
|
|
392 | (2) |
|
|
394 | (2) |
|
|
396 | (1) |
|
12.5. Analytical Solution: Kremser Equation |
|
|
397 | (6) |
|
Example 12-2. Stripping analysis with Kremser equation |
|
|
402 | (1) |
|
12.6. Dilute Multisolute Absorbers and Strippers |
|
|
403 | (3) |
|
12.7. Matrix Solution for Concentrated Absorbers and Strippers |
|
|
406 | (4) |
|
12.8. Irreversible Absorption |
|
|
410 | (1) |
|
12.9. Summary— Objectives |
|
|
411 | (1) |
|
|
412 | (1) |
|
|
413 | (8) |
|
Appendix Computer Simulations for Absorption and Stripping |
|
|
421 | (3) |
Chapter 13 Immiscible Extraction, Washing, Leaching, and Supercritical Extraction |
|
424 | (44) |
|
13.1. Extraction Processes and Equipment |
|
|
424 | (4) |
|
13.2. Countercurrent Extraction |
|
|
428 | (7) |
|
13.2.1. McCabe-Thiele Method for Dilute Systems |
|
|
428 | (6) |
|
Example 13-1. Dilute countercurrent immiscible extraction |
|
|
432 | (2) |
|
13.2.2. Kremser Method for Dilute Systems |
|
|
434 | (1) |
|
13.3. Dilute Fractional Extraction |
|
|
435 | (4) |
|
13.4. Single-Stage and Cross-Flow Extraction |
|
|
439 | (4) |
|
Example 13-2. Single-stage and cross-flow extraction of a protein |
|
|
440 | (3) |
|
13.5. Concentrated Immiscible Extraction |
|
|
443 | (1) |
|
|
444 | (1) |
|
13.7. Generalized McCabe-Thiele and Kremser Procedures |
|
|
445 | (3) |
|
|
448 | (4) |
|
|
451 | (1) |
|
|
452 | (2) |
|
13.10. Supercritical Fluid Extraction |
|
|
454 | (3) |
|
13.11. Application to Other Separations |
|
|
457 | (1) |
|
13.12. Summary—Objectives |
|
|
457 | (1) |
|
|
457 | (2) |
|
|
459 | (9) |
Chapter 14 Extraction of Partially Miscible Systems |
|
468 | (33) |
|
14.1. Extraction Equilibria |
|
|
468 | (3) |
|
14.2. Mixing Calculations and the Lever-Arm Rule |
|
|
471 | (3) |
|
14.3. Single-Stage and Cross-Flow Systems |
|
|
474 | (3) |
|
Example 14-1. Single-stage extraction |
|
|
474 | (3) |
|
14.4. Countercurrent Extraction Cascades |
|
|
477 | (8) |
|
14.4.1. External Mass Balances |
|
|
477 | (2) |
|
14.4.2. Difference Points and Stage-by-Stage Calculations |
|
|
479 | (4) |
|
14.4.3. Complete Extraction Problem |
|
|
483 | (30) |
|
Example 14-2. Countercurrent extraction |
|
|
483 | (2) |
|
14.5. Relationship between McCabe-Thiele and Triangular Diagrams |
|
|
485 | (1) |
|
14.6. Minimum Solvent Rate |
|
|
486 | (2) |
|
14.7. Extraction Computer Simulations |
|
|
488 | (1) |
|
14.8. Leaching with Variable Flow Rates |
|
|
489 | (3) |
|
Example 14-3. Leaching calculations |
|
|
490 | (2) |
|
|
492 | (1) |
|
|
492 | (1) |
|
|
493 | (6) |
|
Appendix Computer Simulation of Extraction |
|
|
499 | (2) |
Chapter 15 Mass Transfer Analysis |
|
501 | (34) |
|
15.1. Basics of Mass Transfer |
|
|
501 | (3) |
|
15.2. HTU-NTU Analysis of Packed Distillation Columns |
|
|
504 | (7) |
|
Example 15-1. Distillation in a packed column |
|
|
508 | (3) |
|
15.3. Relationship of HETP and HTU |
|
|
511 | (2) |
|
15.4. Mass Transfer Correlations for Packed Towers |
|
|
513 | (8) |
|
15.4.1. Detailed Correlations for Random Packings |
|
|
513 | (7) |
|
Example 15-2. Estimation of HG and HL |
|
|
515 | (5) |
|
15.4.2. Simple Correlations |
|
|
520 | (1) |
|
15.5. HTU-NTU Analysis of Absorbers and Strippers |
|
|
521 | (5) |
|
Example 15-3. Absorption of SO2 |
|
|
525 | (1) |
|
15.6. HIL-NTU Analysis of Co-current Absorbers |
|
|
526 | (2) |
|
15.7. Mass Transfer on a Tray |
|
|
528 | (3) |
|
Example 15-4. Estimation of stage efficiency |
|
|
530 | (1) |
|
15.8. Summary— Objectives |
|
|
531 | (1) |
|
|
531 | (1) |
|
|
532 | (3) |
Chapter 16 Introduction to Membrane Separation Processes |
|
535 | (74) |
|
16.1. Membrane Separation Equipment |
|
|
537 | (4) |
|
|
541 | (3) |
|
|
544 | (14) |
|
16.3.1. Gas Permeation of Binary Mixtures |
|
|
544 | (3) |
|
16.3.2. Binary Permeation in Perfectly Mixed Systems |
|
|
547 | (8) |
|
Example 16-1. Well-mixed gas permeation—sequential, analytical solution |
|
|
549 | (1) |
|
Example 16-2. Well-mixed gas permeation—simultaneous analytical and graphical solutions |
|
|
550 | (5) |
|
16.3.3. Multicomponent Permeation in Perfectly Mixed Systems |
|
|
555 | (3) |
|
Example 16-3. Multicomponent, perfectly mixed gas permeation |
|
|
556 | (2) |
|
|
558 | (15) |
|
16.4.1. Analysis of Osmosis and Reverse Osmosis |
|
|
558 | (6) |
|
Example 16-4. RO without concentration polarization |
|
|
562 | (2) |
|
16.4.2. Determination of Membrane Properties from Experiments |
|
|
564 | (2) |
|
Example 16-5. Determination of RO membrane properties |
|
|
564 | (2) |
|
16.4.3. Determination of Concentration Polarization |
|
|
566 | (7) |
|
Example 16-6. RO with concentration polarization |
|
|
567 | (2) |
|
Example 16-7. Prediction of RO performance with concentration polarization |
|
|
569 | (4) |
|
16.4.4. RO with Concentrated Solutions |
|
|
573 | (1) |
|
|
573 | (6) |
|
Example 16-8. UF with gel formation |
|
|
577 | (2) |
|
|
579 | (9) |
|
Example 16-9. Pervaporation: feasibility calculation |
|
|
586 | (2) |
|
Example 16-10. Pervaporation: development of feasible design |
|
|
588 | (1) |
|
16.7. Bulk Flow Pattern Effects |
|
|
588 | (7) |
|
Example 16-11. Flow pattern effects in gas permeation |
|
|
589 | (1) |
|
16.7.1. Binary Cross-Flow Permeation |
|
|
590 | (2) |
|
16.7.2. Binary Co-current Permeation |
|
|
592 | (2) |
|
16.7.3. Binary Countercurrent Flow |
|
|
594 | (1) |
|
16.8. Summary— Objectives |
|
|
595 | (1) |
|
|
596 | (1) |
|
|
597 | (6) |
|
Appendix Spreadsheets for Flow Pattern Calculations for Gas Permeation |
|
|
603 | (6) |
|
|
603 | (2) |
|
|
605 | (1) |
|
16.A.3. Countercurrent Flow |
|
|
606 | (3) |
Chapter 17 Introduction to Adsorption, Chromatography, and Ion Exchange |
|
609 | (104) |
|
17.1. Sorbents and Sorption Equilibrium |
|
|
610 | (11) |
|
|
610 | (2) |
|
|
612 | (3) |
|
17.1.3. Adsorption Equilibrium Behavior |
|
|
615 | (6) |
|
Example 17-1. Adsorption equilibrium |
|
|
620 | (1) |
|
17.2. Solute Movement Analysis for Linear Systems: Basics and Applications to Chromatography |
|
|
621 | (10) |
|
17.2.1. Movement of Solute in a Column |
|
|
623 | (2) |
|
17.2.2. Solute Movement Theory for Linear Isotherms |
|
|
625 | (1) |
|
17.2.3. Application of Linear Solute Movement Theory to Purge Cycles and Elution Chromatography |
|
|
626 | (5) |
|
Example 17-2. Linear solute movement analysis of elution chromatography |
|
|
628 | (3) |
|
17.3. Solute Movement Analysis for Linear Systems: Thermal and Pressure Swing Adsorption and Simulated Moving Beds |
|
|
631 | (23) |
|
17.3.1. Temperature Swing Adsorption |
|
|
631 | (10) |
|
Example 17-3. Thermal regeneration with linear isotherm |
|
|
635 | (6) |
|
17.3.2. Pressure Swing Adsorption |
|
|
641 | (8) |
|
|
644 | (5) |
|
17.3.3. Simulated Moving Beds |
|
|
649 | (5) |
|
|
652 | (2) |
|
17.4. Nonlinear Solute Movement Analysis |
|
|
654 | (9) |
|
|
655 | (3) |
|
Example 17-6. Diffuse wave |
|
|
656 | (2) |
|
|
658 | (5) |
|
Example 17-7. Self-sharpening shock wave |
|
|
659 | (4) |
|
|
663 | (9) |
|
17.5.1. Ion Exchange Equilibrium |
|
|
666 | (1) |
|
|
667 | (5) |
|
Example 17-8. Ion movement for divalent-monovalent exchange |
|
|
668 | (4) |
|
17.6. Mass and Energy Transfer |
|
|
672 | (6) |
|
17.6.1. Mass Transfer and Diffusion |
|
|
672 | (2) |
|
17.6.2. Column Mass Balances |
|
|
674 | (1) |
|
17.6.3. Lumped Parameter Mass Transfer |
|
|
675 | (2) |
|
17.6.4. Energy Balances and Heat Transfer |
|
|
677 | (1) |
|
17.6.5. Derivation of Solute Movement Theory |
|
|
677 | (1) |
|
17.6.6. Detailed Simulators |
|
|
678 | (1) |
|
17.7. Mass Transfer Solutions for Linear Systems |
|
|
678 | (9) |
|
17.7.1. Lapidus and Amundson Solution for Local Equilibrium with Dispersion |
|
|
679 | (1) |
|
17.7.2. Superposition in Linear Systems |
|
|
680 | (3) |
|
Example 17-9. Lapidus and Amundson solution for elution |
|
|
681 | (2) |
|
17.7.3. Linear Chromatography |
|
|
683 | (4) |
|
Example 17-10. Determination of linear isotherm parameters, N, and resolution for linear chromatography |
|
|
686 | (1) |
|
17.8. LUB Approach for Nonlinear Systems |
|
|
687 | (5) |
|
Example 17-11. LUB approach |
|
|
690 | (2) |
|
17.9. Checklist for Practical Design and Operation |
|
|
692 | (1) |
|
17.10. Summary—Objectives |
|
|
693 | (1) |
|
|
693 | (3) |
|
|
696 | (12) |
|
Appendix Introduction to the Aspen Chromatography Simulator |
|
|
708 | (5) |
Appendix A. Aspen Plus Troubleshooting Guide for Separations |
|
713 | (2) |
Answers to Selected Problems |
|
715 | (6) |
Index |
|
721 | |