|
1 General Probability Theory |
|
|
1 | (48) |
|
1.1 Infinite Probability Spaces |
|
|
1 | (6) |
|
1.2 Random Variables and Distributions |
|
|
7 | (6) |
|
|
13 | (10) |
|
1.4 Convergence of Integrals |
|
|
23 | (4) |
|
1.5 Computation of Expectations |
|
|
27 | (5) |
|
|
32 | (7) |
|
|
39 | (2) |
|
|
41 | (1) |
|
|
41 | (8) |
|
2 Information and Conditioning |
|
|
49 | (34) |
|
2.1 Information and o-algebras |
|
|
49 | (4) |
|
|
53 | (13) |
|
2.3 General Conditional Expectations |
|
|
66 | (9) |
|
|
75 | (2) |
|
|
77 | (1) |
|
|
77 | (6) |
|
|
83 | (42) |
|
|
83 | (1) |
|
|
83 | (10) |
|
3.2.1 Symmetric Random Walk |
|
|
83 | (1) |
|
3.2.2 Increments of the Symmetric Random Walk |
|
|
84 | (1) |
|
3.2.3 Martingale Property for the Symmetric Random Walk |
|
|
85 | (1) |
|
3.2.4 Quadratic Variation of the Symmetric Random Walk |
|
|
85 | (1) |
|
3.2.5 Scaled Symmetric Random Walk |
|
|
86 | (2) |
|
3.2.6 Limiting Distribution of the Scaled Random Walk |
|
|
88 | (3) |
|
3.2.7 Log-Normal Distribution as the Limit of the Binomial Model |
|
|
91 | (2) |
|
|
93 | (5) |
|
3.3.1 Definition of Brownian Motion |
|
|
93 | (2) |
|
3.3.2 Distribution of Brownian Motion |
|
|
95 | (2) |
|
3.3.3 Filtration for Brownian Motion |
|
|
97 | (1) |
|
3.3.4 Martingale Property for Brownian Motion |
|
|
98 | (1) |
|
|
98 | (9) |
|
3.4.1 First-Order Variation |
|
|
99 | (2) |
|
3.4.2 Quadratic Variation |
|
|
101 | (5) |
|
3.4.3 Volatility of Geometric Brownian Motion |
|
|
106 | (1) |
|
|
107 | (1) |
|
3.6 First Passage Time Distribution |
|
|
108 | (3) |
|
|
111 | (4) |
|
3.7.1 Reflection Equality |
|
|
111 | (1) |
|
3.7.2 First Passage Time Distribution |
|
|
112 | (1) |
|
3.7.3 Distribution of Brownian Motion and Its Maximum |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (8) |
|
|
125 | (84) |
|
|
125 | (1) |
|
4.2 Itô's Integral for Simple Integrands |
|
|
125 | (7) |
|
4.2.1 Construction of the Integral |
|
|
126 | (2) |
|
4.2.2 Properties of the Integral |
|
|
128 | (4) |
|
4.3 Ito's Integral for General Integrands |
|
|
132 | (5) |
|
|
137 | (16) |
|
4.4.1 Formula for Brownian Motion |
|
|
137 | (6) |
|
4.4.2 Formula for Ito Processes |
|
|
143 | (4) |
|
|
147 | (6) |
|
4.5 Black-Scholes-Merton Equation |
|
|
153 | (11) |
|
4.5.1 Evolution of Portfolio Value |
|
|
154 | (1) |
|
4.5.2 Evolution of Option Value |
|
|
155 | (1) |
|
4.5.3 Equating the Evolutions |
|
|
156 | (2) |
|
4.5.4 Solution to the Black-Scholes-Merton Equation |
|
|
158 | (1) |
|
|
159 | (3) |
|
|
162 | (2) |
|
4.6 Multivariable Stochastic Calculus |
|
|
164 | (8) |
|
4.6.1 Multiple Brownian Motions |
|
|
164 | (1) |
|
4.6.2 Itô-Doeblin Formula for Multiple Processes |
|
|
165 | (3) |
|
4.6.3 Recognizing a Brownian Motion |
|
|
168 | (4) |
|
|
172 | (11) |
|
|
172 | (3) |
|
4.7.2 Brownian Bridge as a Gaussian Process |
|
|
175 | (1) |
|
4.7.3 Brownian Bridge as a Scaled Stochastic Integral |
|
|
176 | (2) |
|
4.7.4 Multidimensional Distribution of the Brownian Bridge |
|
|
178 | (4) |
|
4.7.5 Brownian Bridge as a Conditioned Brownian Motion |
|
|
182 | (1) |
|
|
183 | (4) |
|
|
187 | (2) |
|
|
189 | (20) |
|
|
209 | (54) |
|
|
209 | (1) |
|
|
210 | (11) |
|
5.2.1 Girsanov's Theorem for a Single Brownian Motion |
|
|
210 | (4) |
|
5.2.2 Stock Under the Risk-Neutral Measure |
|
|
214 | (3) |
|
5.2.3 Value of Portfolio Process Under the Risk-Neutral Measure |
|
|
217 | (1) |
|
5.2.4 Pricing Under the Risk-Neutral Measure |
|
|
218 | (1) |
|
5.2.5 Deriving the Black-Scholes-Merton Formula |
|
|
218 | (3) |
|
5.3 Martingale Representation Theorem |
|
|
221 | (3) |
|
5.3.1 Martingale Representation with One Brownian Motion |
|
|
221 | (1) |
|
5.3.2 Hedging with One Stock |
|
|
222 | (2) |
|
5.4 Fundamental Theorems of Asset Pricing |
|
|
224 | (10) |
|
5.4.1 Girsanov and Martingale Representation Theorems |
|
|
224 | (2) |
|
5.4.2 Multidimensional Market Model |
|
|
226 | (2) |
|
5.4.3 Existence of the Risk-Neutral Measure |
|
|
228 | (3) |
|
5.4.4 Uniqueness of the Risk-Neutral Measure |
|
|
231 | (3) |
|
5.5 Dividend-Paying Stocks |
|
|
234 | (6) |
|
5.5.1 Continuously Paying Dividend |
|
|
235 | (2) |
|
5.5.2 Continuously Paying Dividend with Constant Coefficients |
|
|
237 | (1) |
|
5.5.3 Lump Payments of Dividends |
|
|
238 | (1) |
|
5.5.4 Lump Payments of Dividends with Constant Coefficients |
|
|
239 | (1) |
|
|
240 | (8) |
|
|
240 | (1) |
|
|
241 | (6) |
|
5.6.3 Forward-Futures Spread |
|
|
247 | (1) |
|
|
248 | (2) |
|
|
250 | (1) |
|
|
251 | (12) |
|
6 Connections with Partial Differential Equations |
|
|
263 | (32) |
|
|
263 | (1) |
|
6.2 Stochastic Differential Equations |
|
|
263 | (3) |
|
|
266 | (2) |
|
6.4 Partial Differential Equations |
|
|
268 | (4) |
|
|
272 | (5) |
|
6.6 Multidimensional Feynman-Kac Theorems |
|
|
277 | (3) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
282 | (13) |
|
|
295 | (44) |
|
|
295 | (1) |
|
7.2 Maximum of Brownian Motion with Drift |
|
|
295 | (4) |
|
7.3 Knock-out Barrier Options |
|
|
299 | (9) |
|
|
300 | (1) |
|
7.3.2 Black-Scholes-Merton Equation |
|
|
300 | (4) |
|
7.3.3 Computation of the Price of the Up-and-Out Call |
|
|
304 | (4) |
|
|
308 | (12) |
|
7.4.1 Floating Strike Lookback Option |
|
|
308 | (1) |
|
7.4.2 Black-Scholes-Merton Equation |
|
|
309 | (3) |
|
7.4.3 Reduction of Dimension |
|
|
312 | (2) |
|
7.4.4 Computation of the Price of the Lookback Option |
|
|
314 | (6) |
|
|
320 | (11) |
|
7.5.1 Fixed-Strike Asian Call |
|
|
320 | (1) |
|
7.5.2 Augmentation of the State |
|
|
321 | (2) |
|
7.5.3 Change of Numeraire |
|
|
323 | (8) |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
332 | (7) |
|
8 American Derivative Securities |
|
|
339 | (36) |
|
|
339 | (1) |
|
|
340 | (5) |
|
8.3 Perpetual American Put |
|
|
345 | (11) |
|
8.3.1 Price Under Arbitrary Exercise |
|
|
346 | (3) |
|
8.3.2 Price Under Optimal Exercise |
|
|
349 | (2) |
|
8.3.3 Analytical Characterization of the Put Price |
|
|
351 | (2) |
|
8.3.4 Probabilistic Characterization of the Put Price |
|
|
353 | (3) |
|
8.4 Finite-Expiration American Put |
|
|
356 | (5) |
|
8.4.1 Analytical Characterization of the Put Price |
|
|
357 | (2) |
|
8.4.2 Probabilistic Characterization of the Put Price |
|
|
359 | (2) |
|
|
361 | (7) |
|
8.5.1 Underlying Asset Pays No Dividends |
|
|
361 | (2) |
|
8.5.2 Underlying Asset Pays Dividends |
|
|
363 | (5) |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
370 | (5) |
|
|
375 | (28) |
|
|
375 | (1) |
|
|
376 | (5) |
|
9.3 Foreign and Domestic Risk-Neutral Measures |
|
|
381 | (11) |
|
9.3.1 The Basic Processes |
|
|
381 | (2) |
|
9.3.2 Domestic Risk-Neutral Measure |
|
|
383 | (2) |
|
9.3.3 Foreign Risk-Neutral Measure |
|
|
385 | (2) |
|
9.3.4 Siegel's Exchange Rate Paradox |
|
|
387 | (1) |
|
9.3.5 Forward Exchange Rates |
|
|
388 | (2) |
|
9.3.6 Garman-Kohlhagen Formula |
|
|
390 | (1) |
|
9.3.7 Exchange Rate Put-Call Duality |
|
|
390 | (2) |
|
|
392 | (5) |
|
|
392 | (1) |
|
9.4.2 Zero-Coupon Bond as Numeraire |
|
|
392 | (2) |
|
9.4.3 Option Pricing with a Random Interest Rate |
|
|
394 | (3) |
|
|
397 | (1) |
|
|
398 | (1) |
|
|
398 | (5) |
10 Term-Structure Models |
|
403 | (58) |
|
|
403 | (2) |
|
|
405 | (1) |
|
10.2.1 Two-Factor Vasicek Model |
|
|
406 | (1) |
|
10.2.2 Two-Factor CIR Model |
|
|
420 | (1) |
|
|
422 | (1) |
|
10.3 Heath-Jarrow-Morton Model |
|
|
423 | (1) |
|
|
423 | (1) |
|
10.3.2 Dynamics of Forward Rates and Bond Prices |
|
|
425 | (1) |
|
10.3.3 No-Arbitrage Condition |
|
|
426 | (1) |
|
10.3.4 HJM Under Risk-Neutral Measure |
|
|
429 | (1) |
|
10.3.5 Relation to Affine-Yield Models |
|
|
430 | (1) |
|
10.3.6 Implementation of HJM |
|
|
432 | (3) |
|
|
435 | (1) |
|
10.4.1 The Problem with Forward Rates |
|
|
435 | (1) |
|
10.4.2 LIBOR and Forward LIBOR |
|
|
436 | (1) |
|
10.4.3 Pricing a Backset LIBOR Contract |
|
|
437 | (1) |
|
10.4.4 Black Caplet Formula |
|
|
438 | (1) |
|
10.4.5 Forward LIBOR and Zero-Coupon Bond Volatilities |
|
|
440 | (1) |
|
10.4.6 A Forward LIBOR Term-Structure Model |
|
|
442 | (5) |
|
|
447 | (3) |
|
|
450 | (1) |
|
|
451 | (10) |
11 Introduction to Jump Processes |
|
461 | (66) |
|
|
461 | (1) |
|
|
462 | (1) |
|
11.2.1 Exponential Random Variables |
|
|
462 | (1) |
|
11.2.2 Construction of a Poisson Process |
|
|
463 | (1) |
|
11.2.3 Distribution of Poisson Process Increments |
|
|
463 | (1) |
|
11.2.4 Mean and Variance of Poisson Increments |
|
|
466 | (1) |
|
11.2.5 Martingale Property |
|
|
467 | (1) |
|
11.3 Compound Poisson Process |
|
|
468 | (1) |
|
11.3.1 Construction of a Compound Poisson Process |
|
|
468 | (1) |
|
11.3.2 Moment-Generating Function |
|
|
470 | (3) |
|
11.4 Jump Processes and Their Integrals |
|
|
473 | (1) |
|
|
474 | (1) |
|
11.4.2 Quadratic Variation |
|
|
479 | (4) |
|
11.5 Stochastic Calculus for Jump Processes |
|
|
483 | (1) |
|
11.5.1 Itô-Doeblin Formula for One Jump Process |
|
|
483 | (1) |
|
11.5.2 Itô-Doeblin Formula for Multiple Jump Processes |
|
|
489 | (3) |
|
|
492 | (1) |
|
11.6.1 Change of Measure for a Poisson Process |
|
|
493 | (1) |
|
11.6.2 Change of Measure for a Compound Poisson Process |
|
|
495 | (1) |
|
11.6.3 Change of Measure for a Compound Poisson Process and a Brownian Motion |
|
|
502 | (3) |
|
11.7 Pricing a European Call in a Jump Model |
|
|
505 | (1) |
|
11.7.1 Asset Driven by a Poisson Process |
|
|
505 | (1) |
|
11.7.2 Asset Driven by a Brownian Motion and a Compound Poisson Process |
|
|
512 | (11) |
|
|
523 | (2) |
|
|
525 | (1) |
|
|
525 | (2) |
A Advanced Topics in Probability Theory |
|
527 | (1) |
|
|
527 | (3) |
|
A.2 Generating σ-algebras |
|
|
530 | (1) |
|
A.3 Random Variable with Neither Density nor Probability Mass Function |
|
|
531 | (2) |
B Existence of Conditional Expectations |
|
533 | (2) |
C Completion of the Proof of the Second Fundamental Theorem of Asset Pricing |
|
535 | (2) |
References |
|
537 | (8) |
Index |
|
545 | |