Preface |
|
xiii | |
1 Why Are We Here? |
|
1 | (2) |
2 Sample Paths |
|
3 | (20) |
|
2.1 The Case of the Copy Enlargement |
|
|
3 | (1) |
|
|
4 | (2) |
|
2.3 Sample-Path Decomposition |
|
|
6 | (10) |
|
2.3.1 Simulating the Self-Service System |
|
|
11 | (3) |
|
2.3.2 Simulating the Full-Service System |
|
|
14 | (1) |
|
|
15 | (9) |
|
|
16 | (7) |
3 Basics |
|
23 | (38) |
|
|
24 | (13) |
|
|
24 | (4) |
|
3.1.2 Joint Distributions |
|
|
28 | (1) |
|
|
29 | (3) |
|
3.1.4 Conditional Probability |
|
|
32 | (4) |
|
3.1.5 Limit Distributions |
|
|
36 | (57) |
|
|
37 | (6) |
|
3.3 Random-Variate Generation |
|
|
43 | (6) |
|
3.4 The Case of the Copy Enlargement, Revisited |
|
|
49 | (2) |
|
|
51 | (1) |
|
|
51 | (10) |
4 Simulation |
|
61 | (22) |
|
4.1 The Case of the Leaky Bit Bucket |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (2) |
|
4.4 Simulating the Leaky Bit Bucket |
|
|
64 | (6) |
|
4.5 A Generic Stochastic-Process Model |
|
|
70 | (3) |
|
4.6 Simulating the Copy Enlargement |
|
|
73 | (3) |
|
4.7 Simulation Programming |
|
|
76 | (4) |
|
|
80 | (1) |
|
|
80 | (3) |
5 Arrival-Counting Processes |
|
83 | (44) |
|
5.1 The Case of the Reckless Beehunter |
|
|
83 | (2) |
|
|
85 | (1) |
|
5.3 A Generic Arrival-Counting-Process Model |
|
|
86 | (3) |
|
5.4 Simulating the Reckless Beehunter |
|
|
89 | (4) |
|
5.5 The Poisson Arrival Process |
|
|
93 | (5) |
|
5.5.1 Probability Structure of the Sample Paths |
|
|
93 | (5) |
|
5.5.2 Parameterizing Poisson Processes |
|
|
98 | (1) |
|
5.6 More about Poisson Arrival Processes |
|
|
98 | (9) |
|
5.6.1 Decomposition of a Poisson Process |
|
|
99 | (3) |
|
5.6.2 Superposition of Poisson Processes |
|
|
102 | (2) |
|
5.6.3 Nonstationary Poisson Processes |
|
|
104 | (5) |
|
5.7 The Case of the Meandering Message |
|
|
107 | (2) |
|
|
109 | (4) |
|
5.8.1 Memoryless Property |
|
|
109 | (1) |
|
5.8.2 Independent-Increments and Stationary-Increments Properties |
|
|
110 | (1) |
|
5.8.3 Decomposition Property |
|
|
111 | (1) |
|
5.8.4 Superposition Property |
|
|
111 | (1) |
|
5.8.5 Nonstationary Poisson Process |
|
|
112 | (1) |
|
5.9 Results for the Renewal Arrival-Counting Process |
|
|
113 | (4) |
|
5.9.1 The Case of the Perpetual Payoff |
|
|
114 | (2) |
|
|
116 | (1) |
|
5.9.3 Other Arrival-Counting Processes |
|
|
117 | (15) |
|
|
117 | (1) |
|
|
118 | (9) |
6 Discrete-Time Processes |
|
127 | (42) |
|
6.1 The Case of the Random Behavior |
|
|
127 | (1) |
|
|
128 | (1) |
|
6.3 Simulating the Random Behavior |
|
|
129 | (3) |
|
|
132 | (7) |
|
6.4.1 Probability Structure of the Sample Paths |
|
|
132 | (5) |
|
6.4.2 Parameterizing Markov Chains |
|
|
137 | (1) |
|
6.4.3 Transition Diagrams |
|
|
138 | (2) |
|
6.5 The Case of the Defective Detective |
|
|
139 | (1) |
|
6.6 Time-Dependent Performance Measures |
|
|
140 | (7) |
|
|
142 | (3) |
|
|
145 | (2) |
|
6.7 Time-Independent (Long-Run) Performance Measures |
|
|
147 | (7) |
|
6.7.1 Classification of States |
|
|
148 | (2) |
|
6.7.2 Performance Measures |
|
|
150 | (2) |
|
|
152 | (1) |
|
|
153 | (17) |
|
6.8 The Markov and Stationarity Properties Revisited |
|
|
154 | (2) |
|
|
156 | (2) |
|
|
158 | (11) |
7 Continuous-Time Processes |
|
169 | (52) |
|
7.1 The Case of the Software Sellout |
|
|
169 | (1) |
|
|
170 | (5) |
|
7.2.1 Markov Chain Review |
|
|
170 | (2) |
|
7.2.2 Properties of the Exponential and Geometric Distributions |
|
|
172 | (10) |
|
7.3 Simulating the Software Sellout |
|
|
175 | (3) |
|
7.4 Sample Paths of the Software Sellout |
|
|
178 | (4) |
|
|
182 | (6) |
|
7.5.1 Probability Structure of a Markov Process |
|
|
183 | (2) |
|
7.5.2 Parameterizing Markov Processes |
|
|
185 | (3) |
|
7.6 Analysis of Markov Process Sample Paths |
|
|
188 | (17) |
|
7.6.1 Performance Measures |
|
|
188 | (2) |
|
7.6.2 Time-Dependent Performance Measures |
|
|
190 | (3) |
|
7.6.3 Time-Dependent Example |
|
|
193 | (4) |
|
7.6.4 Time-Independent (Long-Run) Performance Measures |
|
|
197 | (2) |
|
7.6.5 Time-Independent Example |
|
|
199 | (2) |
|
|
201 | (21) |
|
7.7 The Case of the Stressed-Out Student |
|
|
205 | (3) |
|
7.8 The Markov and Stationarity Properties Revisited |
|
|
208 | (2) |
|
7.9 Semi-Markov Processes |
|
|
210 | (2) |
|
|
212 | (1) |
|
|
213 | (8) |
8 Queueing Processes |
|
221 | (60) |
|
8.1 The Case of the Last Parking Space on Earth |
|
|
221 | (1) |
|
|
222 | (5) |
|
8.2.1 Series and Recursions |
|
|
222 | (2) |
|
8.2.2 Markov Process Review |
|
|
224 | (5) |
|
8.3 A Queueing Model for the Last Parking Space on Earth |
|
|
227 | (2) |
|
8.4 Markovian Queueing Processes |
|
|
229 | (6) |
|
8.4.1 The Birth-Death Process |
|
|
229 | (1) |
|
8.4.2 Performance Measures |
|
|
230 | (5) |
|
8.5 Standard Formulations |
|
|
235 | (4) |
|
|
235 | (3) |
|
|
238 | (2) |
|
8.6 Parameterizing Queueing Processes |
|
|
239 | (1) |
|
8.7 Shorthand Notation and Examples |
|
|
240 | (6) |
|
|
241 | (3) |
|
8.7.2 The M/M/s/n/k Queue with s = n |
|
|
244 | (4) |
|
8.8 The Case of the Tardy Ticket |
|
|
246 | (2) |
|
8.9 Networks of Markovian Queues |
|
|
248 | (12) |
|
8.9.1 The Case of the Incredible Shrinking Leviathan |
|
|
249 | (5) |
|
8.9.2 Markov Process Model of the Incredible Shrinking Leviathan |
|
|
254 | (4) |
|
8.9.3 Open Jackson Networks |
|
|
258 | (2) |
|
8.10 Non-Markovian Queues and Networks |
|
|
260 | (8) |
|
8.10.1 A GI/G/s Approximation |
|
|
262 | (2) |
|
8.10.2 A Queueing-Network Approximation |
|
|
264 | (17) |
|
|
268 | (13) |
9 Topics in Simulation of Stochastic Processes |
|
281 | (26) |
|
9.1 Statistical Issues in Simulation |
|
|
281 | (16) |
|
9.1.1 Initial-Condition Effects |
|
|
282 | (6) |
|
|
288 | (4) |
|
9.1.3 Random Number Assignment |
|
|
292 | (5) |
|
|
297 | (3) |
|
|
300 | (7) |
A Simulation Programming Examples |
|
307 | (8) |
|
|
308 | (4) |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (2) |
References |
|
315 | (2) |
Index |
|
317 | |