Preface |
|
xiii | |
|
I Neural Encoding and Decoding |
|
|
1 | (150) |
|
Neural Encoding I: Firing Rates and Spike Statistics |
|
|
3 | (42) |
|
|
3 | (5) |
|
Spike Trains and Firing Rates |
|
|
8 | (9) |
|
What Makes a Neuron Fire? |
|
|
17 | (7) |
|
|
24 | (10) |
|
|
34 | (5) |
|
|
39 | (1) |
|
|
40 | (3) |
|
|
43 | (2) |
|
Neural Encoding II: Reverse Correlation and Visual Receptive Fields |
|
|
45 | (42) |
|
|
45 | (1) |
|
|
45 | (6) |
|
Introduction to the Early Visual System |
|
|
51 | (9) |
|
Reverse-Correlation Methods: Simple Cells |
|
|
60 | (14) |
|
Static Nonlinearities: Complex Cells |
|
|
74 | (3) |
|
Receptive Fields in the Retina and LGN |
|
|
77 | (2) |
|
Constructing V1 Receptive Fields |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
81 | (3) |
|
|
84 | (3) |
|
|
87 | (36) |
|
|
87 | (2) |
|
|
89 | (8) |
|
|
97 | (16) |
|
|
113 | (5) |
|
|
118 | (1) |
|
|
119 | (3) |
|
|
122 | (1) |
|
|
123 | (28) |
|
Entropy and Mutual Information |
|
|
123 | (7) |
|
Information and Entropy Maximization |
|
|
130 | (15) |
|
Entropy and Information for Spike Trains |
|
|
145 | (4) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
II Neurons and Neural Circuits |
|
|
151 | (128) |
|
Model Neurons I: Neuroelectronics |
|
|
153 | (42) |
|
|
153 | (1) |
|
Electrical Properties of Neurons |
|
|
153 | (8) |
|
Single-Compartment Models |
|
|
161 | (1) |
|
Integrate-and-Fire Models |
|
|
162 | (4) |
|
Voltage-Dependent Conductances |
|
|
166 | (7) |
|
|
173 | (2) |
|
|
175 | (3) |
|
|
178 | (10) |
|
Synapses on Integrate-and-Fire Neurons |
|
|
188 | (3) |
|
|
191 | (1) |
|
|
191 | (2) |
|
|
193 | (2) |
|
Model Neurons II: Conductances and Morphology |
|
|
195 | (34) |
|
Levels of Neuron Modeling |
|
|
195 | (1) |
|
|
195 | (8) |
|
|
203 | (14) |
|
|
217 | (7) |
|
|
224 | (1) |
|
|
224 | (4) |
|
|
228 | (1) |
|
|
229 | (50) |
|
|
229 | (2) |
|
|
231 | (10) |
|
|
241 | (3) |
|
|
244 | (21) |
|
Excitatory-Inhibitory Networks |
|
|
265 | (8) |
|
|
273 | (3) |
|
|
276 | (1) |
|
|
276 | (1) |
|
|
277 | (2) |
|
III Adaptation and Learning |
|
|
279 | (120) |
|
|
281 | (50) |
|
|
281 | (3) |
|
Synaptic Plasticity Rules |
|
|
284 | (9) |
|
|
293 | (20) |
|
|
313 | (13) |
|
|
326 | (1) |
|
|
327 | (1) |
|
|
328 | (3) |
|
Classical Conditioning and Reinforcement Learning |
|
|
331 | (28) |
|
|
331 | (1) |
|
|
332 | (8) |
|
|
340 | (6) |
|
|
346 | (8) |
|
|
354 | (1) |
|
|
355 | (2) |
|
|
357 | (2) |
|
Representational Learning |
|
|
359 | (40) |
|
|
359 | (9) |
|
|
368 | (5) |
|
Causal Models for Density Estimation |
|
|
373 | (16) |
|
|
389 | (5) |
|
|
394 | (1) |
|
|
395 | (1) |
|
|
396 | (3) |
|
|
399 | (20) |
|
|
399 | (9) |
|
Finding Extrema and Lagrange Multipliers |
|
|
408 | (2) |
|
|
410 | (3) |
|
|
413 | (2) |
|
|
415 | (3) |
|
|
418 | (1) |
References |
|
419 | (20) |
Index |
|
439 | |